Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 184535 by CrispyXYZ last updated on 08/Jan/23

If a, b>0 such that 2a+b=2,  then find the minimum value of:  1)  (4a^2 +1)(b^2 +1)  2)  ((2a^2 −b+4)/(a+1))+((b^2 −2a−2)/(b+4))

Ifa,b>0suchthat2a+b=2, thenfindtheminimumvalueof: 1)(4a2+1)(b2+1) 2)2a2b+4a+1+b22a2b+4

Answered by cortano1 last updated on 08/Jan/23

(1)  { ((b=2−2a)),((f(a)=(4a^2 +1)(4a^2 −8a+5))) :}   f(a)=16a^4 −32a^3 +24a^2 −8a+5   f ′(a)=64a^3 −96a^2 +48a−8=0     ⇒a=(1/2) ; b=2−1=1   min {(4a^2 +1)(b^2 +1)}= 2×2=4

(1){b=22af(a)=(4a2+1)(4a28a+5) f(a)=16a432a3+24a28a+5 f(a)=64a396a2+48a8=0 a=12;b=21=1 min{(4a2+1)(b2+1)}=2×2=4

Answered by mr W last updated on 08/Jan/23

(1)  a+(b/2)=1  a=cos^2  θ  b=2 sin^2  θ  (4 cos^4  θ+1)(4 sin^4  θ+1)  =1+4(cos^4  θ+sin^4  θ)+16 (cos θ sin θ)^4   =1+4−2(2 cos θ sin θ)^2 +(2 cos θ sin θ)^4   =5−2 sin^2  2θ+ sin^4  2θ  =4+(1−sin^2  2θ)^2   =4+cos^4  2θ ≥ 4=minimum

(1) a+b2=1 a=cos2θ b=2sin2θ (4cos4θ+1)(4sin4θ+1) =1+4(cos4θ+sin4θ)+16(cosθsinθ)4 =1+42(2cosθsinθ)2+(2cosθsinθ)4 =52sin22θ+sin42θ =4+(1sin22θ)2 =4+cos42θ4=minimum

Answered by greougoury555 last updated on 08/Jan/23

(1) f(a,b,λ)=(4a^2 +1)(b^2 +1)+λ(2a+b−2)   (∂f/∂a) = 8a(b^2 +1)+2λ=0   (∂f/∂b) = 2b(4a^2 +1)+λ=0   (∂f/∂λ) = 2a+b−2=0⇒b=2−2a  ⇒ −4a(b^2 +1)=−2b(4a^2 +1)  ⇒a(4a^2 −8a+5)=(1−a)(4a^2 +1)  ⇒4a^3 −8a^2 +5a=−4a^3 +4a^2 −a+1  ⇒8a^3 −12a^2 +6a−1=0  ⇒(2a−1)^3 =0 ; a=(1/2)  ∴ minimum (4a^2 +1)(b^2 +1)= 4

(1)f(a,b,λ)=(4a2+1)(b2+1)+λ(2a+b2) fa=8a(b2+1)+2λ=0 fb=2b(4a2+1)+λ=0 fλ=2a+b2=0b=22a 4a(b2+1)=2b(4a2+1) a(4a28a+5)=(1a)(4a2+1) 4a38a2+5a=4a3+4a2a+1 8a312a2+6a1=0 (2a1)3=0;a=12 minimum(4a2+1)(b2+1)=4

Answered by ajfour last updated on 08/Jan/23

1)  2a=t  t+b=2  (t^2 +1)(b^2 +1)   is minimum  for t=b=1  , so    the minimum is 2×2=4  2)  f(t,b)=((t^2 −2b+8)/(t+2))+((b^2 −t−2)/(b+4))  let  t+2=p     b+4=q  p+q=8  f(p,q)=((p^2 −4p−2q+20)/p)+((q^2 −8q−p+16)/q)    =p−4+((20)/p)−((2q)/p)+q−8−(p/q)+((16)/q)    =−4+((20)/p)+((16)/q)−((2q)/p)−(p/q)    =−4+((2(10−q))/p)+(((16−p))/q)    =−4+((2(2+p))/p)+(((8+q))/q)    =−1+(4/p)+(8/q)  f(p)=−1+(4/p)+(8/(8−p))  (df/dp)=−(4/p^2 )+(8/((8−p)^2 )) =0  ⇒   ((8−p)/p)=±(√2)      p=(8/(1+(√2)))   or   p=−(8/(((√2)−1)))  f_1 =−1+(4/p)+(8/(8−p))=((1+(√2))/2)+(1/(1−(1/(1+(√2)))))      =−1+((1+(√2))/2)+((1+(√2))/( (√2)))=(1/2)+(√2)    f_2 =−1−((((√2)−1))/2)+(1/(1+(1/( (√2)−1))))       =−1+((1−(√2)+2−(√2))/2)=(1/2)−(√2)

1) 2a=t t+b=2 (t2+1)(b2+1)isminimum fort=b=1,so theminimumis2×2=4 2) f(t,b)=t22b+8t+2+b2t2b+4 lett+2=pb+4=q p+q=8 f(p,q)=p24p2q+20p+q28qp+16q =p4+20p2qp+q8pq+16q =4+20p+16q2qppq =4+2(10q)p+(16p)q =4+2(2+p)p+(8+q)q =1+4p+8q f(p)=1+4p+88p dfdp=4p2+8(8p)2=0 8pp=±2 p=81+2orp=8(21) f1=1+4p+88p=1+22+1111+2 =1+1+22+1+22=12+2 f2=1(21)2+11+121 =1+12+222=122

Commented bymr W last updated on 08/Jan/23

please recheck here:  f(t,b)=((t^2 /2−2b+8)/(t+2))+((b^2 −t−2)/(b+4))  i think for (2) there is no nice looking  solution.

pleaserecheckhere: f(t,b)=t2/22b+8t+2+b2t2b+4 ithinkfor(2)thereisnonicelooking solution.

Commented byajfour last updated on 08/Jan/23

no  sir    f(t,b)=((t^2 −2b+8)/(t+2))          =((4a^2 −2b+8)/(2a+2))

nosirf(t,b)=t22b+8t+2 =4a22b+82a+2

Commented bymr W last updated on 08/Jan/23

yes, you are right.

yes,youareright.

Answered by Frix last updated on 08/Jan/23

2)  b=2−2a  ⇒  −((a^2 +7)/((a+1)(a−3)))  ((d[−((a^2 +7)/((a+1)(a−3)))])/da)=((2(a^2 +10a−7))/((a+1)^2 (a−3)^2 ))=0  ⇒  a=−5±4(√2)  local max=(1/2)−(√2) at a=−5−4(√2)  local min=(1/2)+(√2) at a=−5+4(√2)

2) b=22a a2+7(a+1)(a3) d[a2+7(a+1)(a3)]da=2(a2+10a7)(a+1)2(a3)2=0 a=5±42 localmax=122ata=542 localmin=12+2ata=5+42

Answered by mr W last updated on 08/Jan/23

(2)  2a+b=2  ⇒0<a<1, 0<b<2    ((2a^2 +2a−2+4)/(a+1))+((b^2 +b−2−2)/(b+4))  =((2(a^2 +a+1))/(a+1))+((b^2 +b−4)/(b+4))  =(((2a)^2 )/(2a+2))+((b^2 −8)/(b+4))+3  =(((2−b)^2 )/(4−b))+((b^2 −8)/(4+b))+3  =((4(b^2 −b−4))/(16−b^2 ))+3  =((4(12−b))/(16−b^2 ))−1  =4((1/(4−b))+(2/(4+b))_(f(b)) )−1  f′(b)=(1/((4−b)^2 ))−(2/((4+b)^2 ))=0  (4+b)^2 −2(4−b)^2 =0  (b−(√2)b+4+4(√2))(b+(√2)b+4−4(√2))=0  ⇒b=((4((√2)−1))/( (√2)+1))=4(3−2(√2)) or  ⇒b=((4((√2)+1))/( (√2)−1))=4(3+2(√2)) (>2, rejected)  at b=4(3−2(√2)) minimum=(√2)+(1/2)

(2) 2a+b=2 0<a<1,0<b<2 2a2+2a2+4a+1+b2+b22b+4 =2(a2+a+1)a+1+b2+b4b+4 =(2a)22a+2+b28b+4+3 =(2b)24b+b284+b+3 =4(b2b4)16b2+3 =4(12b)16b21 =4(14b+24+bf(b))1 f(b)=1(4b)22(4+b)2=0 (4+b)22(4b)2=0 (b2b+4+42)(b+2b+442)=0 b=4(21)2+1=4(322)or b=4(2+1)21=4(3+22)(>2,rejected) atb=4(322)minimum=2+12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com