Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 18457 by Tinkutara last updated on 21/Jul/17

The number of solutions of the equation  sin θ + cos θ = 1 + sin θ cos θ in the  interval [0, 4π] is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{sin}\:\theta\:+\:\mathrm{cos}\:\theta\:=\:\mathrm{1}\:+\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{interval}\:\left[\mathrm{0},\:\mathrm{4}\pi\right]\:\mathrm{is} \\ $$

Answered by mrW1 last updated on 21/Jul/17

sin θ + cos θ = 1 + sin θ cos θ  2(sin θ + cos θ) = 1 +sin^2  θ+cos^2  θ+2 sin θ cos θ  2(sin θ + cos θ) = 1 +( sin θ +cos θ)^2   1 −2(sin θ+cos θ)+( sin θ +cos θ)^2 =0  [(sin θ+cos θ)−1]^2 =0  sin θ+cos θ=1  sin θcos (π/4)+cos θsin (π/4)=((√2)/2)  sin (θ+(π/4))=((√2)/2)  θ+(π/4)=2kπ+(π/4),2kπ+((3π)/4)  θ=2kπ,2kπ+(π/2)  in [0,4π]:  θ=0,(π/2),2π,((5π)/2),4π  ⇒5 solutions

$$\mathrm{sin}\:\theta\:+\:\mathrm{cos}\:\theta\:=\:\mathrm{1}\:+\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta \\ $$$$\mathrm{2}\left(\mathrm{sin}\:\theta\:+\:\mathrm{cos}\:\theta\right)\:=\:\mathrm{1}\:+\mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{cos}^{\mathrm{2}} \:\theta+\mathrm{2}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta \\ $$$$\mathrm{2}\left(\mathrm{sin}\:\theta\:+\:\mathrm{cos}\:\theta\right)\:=\:\mathrm{1}\:+\left(\:\mathrm{sin}\:\theta\:+\mathrm{cos}\:\theta\right)^{\mathrm{2}} \\ $$$$\mathrm{1}\:−\mathrm{2}\left(\mathrm{sin}\:\theta+\mathrm{cos}\:\theta\right)+\left(\:\mathrm{sin}\:\theta\:+\mathrm{cos}\:\theta\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\left[\left(\mathrm{sin}\:\theta+\mathrm{cos}\:\theta\right)−\mathrm{1}\right]^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{sin}\:\theta+\mathrm{cos}\:\theta=\mathrm{1} \\ $$$$\mathrm{sin}\:\theta\mathrm{cos}\:\frac{\pi}{\mathrm{4}}+\mathrm{cos}\:\theta\mathrm{sin}\:\frac{\pi}{\mathrm{4}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{4}}\right)=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\theta+\frac{\pi}{\mathrm{4}}=\mathrm{2k}\pi+\frac{\pi}{\mathrm{4}},\mathrm{2k}\pi+\frac{\mathrm{3}\pi}{\mathrm{4}} \\ $$$$\theta=\mathrm{2k}\pi,\mathrm{2k}\pi+\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{in}\:\left[\mathrm{0},\mathrm{4}\pi\right]: \\ $$$$\theta=\mathrm{0},\frac{\pi}{\mathrm{2}},\mathrm{2}\pi,\frac{\mathrm{5}\pi}{\mathrm{2}},\mathrm{4}\pi \\ $$$$\Rightarrow\mathrm{5}\:\mathrm{solutions} \\ $$

Commented by mrW1 last updated on 22/Jul/17

be careful with squaring!  x=y ⇒ x^2 =y^2   but x^2 =y^2  ⇏ x=y alone  since x^2 =y^2  ⇒ ∣x∣=∣y∣ i.e. x=±y    in your case you have also solutions  which fulfill following equation  sin θ + cos θ = −(1 + sin θ cos θ)    e.g. with θ=π  sin π + cos π =−1  1+sin π cos π=1  1≠−1 but (1)^2 =(−1)^2

$$\mathrm{be}\:\mathrm{careful}\:\mathrm{with}\:\mathrm{squaring}! \\ $$$$\mathrm{x}=\mathrm{y}\:\Rightarrow\:\mathrm{x}^{\mathrm{2}} =\mathrm{y}^{\mathrm{2}} \\ $$$$\mathrm{but}\:\mathrm{x}^{\mathrm{2}} =\mathrm{y}^{\mathrm{2}} \:\nRightarrow\:\mathrm{x}=\mathrm{y}\:\mathrm{alone} \\ $$$$\mathrm{since}\:\mathrm{x}^{\mathrm{2}} =\mathrm{y}^{\mathrm{2}} \:\Rightarrow\:\mid\mathrm{x}\mid=\mid\mathrm{y}\mid\:\mathrm{i}.\mathrm{e}.\:\mathrm{x}=\pm\mathrm{y} \\ $$$$ \\ $$$$\mathrm{in}\:\mathrm{your}\:\mathrm{case}\:\mathrm{you}\:\mathrm{have}\:\mathrm{also}\:\mathrm{solutions} \\ $$$$\mathrm{which}\:\mathrm{fulfill}\:\mathrm{following}\:\mathrm{equation} \\ $$$$\mathrm{sin}\:\theta\:+\:\mathrm{cos}\:\theta\:=\:−\left(\mathrm{1}\:+\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\right) \\ $$$$ \\ $$$$\mathrm{e}.\mathrm{g}.\:\mathrm{with}\:\theta=\pi \\ $$$$\mathrm{sin}\:\pi\:+\:\mathrm{cos}\:\pi\:=−\mathrm{1} \\ $$$$\mathrm{1}+\mathrm{sin}\:\pi\:\mathrm{cos}\:\pi=\mathrm{1} \\ $$$$\mathrm{1}\neq−\mathrm{1}\:\mathrm{but}\:\left(\mathrm{1}\right)^{\mathrm{2}} =\left(−\mathrm{1}\right)^{\mathrm{2}} \\ $$

Commented by Tinkutara last updated on 22/Jul/17

Thanks Sir! But what is the mistake in  my method?  sin θ + cos θ = 1 + sin θ cos θ  1 + sin 2θ = 1 + sin^2  θ cos^2  θ + sin 2θ  sin θ cos θ = 0 ⇒ sin 2θ = 0  θ = 0, (π/2), π, ((3π)/2), 2π, ((5π)/2), 3π, ((7π)/2), 4π

$$\mathrm{Thanks}\:\mathrm{Sir}!\:\mathrm{But}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{mistake}\:\mathrm{in} \\ $$$$\mathrm{my}\:\mathrm{method}? \\ $$$$\mathrm{sin}\:\theta\:+\:\mathrm{cos}\:\theta\:=\:\mathrm{1}\:+\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta \\ $$$$\mathrm{1}\:+\:\mathrm{sin}\:\mathrm{2}\theta\:=\:\mathrm{1}\:+\:\mathrm{sin}^{\mathrm{2}} \:\theta\:\mathrm{cos}^{\mathrm{2}} \:\theta\:+\:\mathrm{sin}\:\mathrm{2}\theta \\ $$$$\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\:=\:\mathrm{0}\:\Rightarrow\:\mathrm{sin}\:\mathrm{2}\theta\:=\:\mathrm{0} \\ $$$$\theta\:=\:\mathrm{0},\:\frac{\pi}{\mathrm{2}},\:\pi,\:\frac{\mathrm{3}\pi}{\mathrm{2}},\:\mathrm{2}\pi,\:\frac{\mathrm{5}\pi}{\mathrm{2}},\:\mathrm{3}\pi,\:\frac{\mathrm{7}\pi}{\mathrm{2}},\:\mathrm{4}\pi \\ $$

Commented by Tinkutara last updated on 22/Jul/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com