Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 184633 by ajfour last updated on 09/Jan/23

Answered by mr W last updated on 09/Jan/23

Commented by mr W last updated on 09/Jan/23

AD^2 =a^2 +b^2 +2ab cos 30°  ⇒AD=(√(a^2 +b^2 +(√3)ab))  sin (A/2)=(b/(AD))=(b/( (√(a^2 +b^2 +(√3)ab))))  cos (A/2)=((√(a^2 +(√3)ab))/( (√(a^2 +b^2 +(√3)ab))))  ⇒sin A=((2b(√(a^2 +(√3)ab)))/(a^2 +b^2 +(√3)ab))  (p/(sin A))=2a  ⇒p=((4ab(√(a^2 +(√3)ab)))/(a^2 +b^2 +(√3)ab))  ((sin α)/b)=((sin 30°)/(AD))  ⇒sin α=(b/(2(√(a^2 +b^2 +(√3)ab))))  r=2a cos ((A/2)−α)  q=2a cos ((A/2)+α)  q+r=4a cos (A/2) cos α=4a×((√(a^2 +(√3)ab))/( (√(a^2 +b^2 +(√3)ab))))×((2a+(√3)b)/(2(√(a^2 +b^2 +(√3)ab))))  q+r=((2a(2a+(√3)b)(√(a^2 +(√3)ab)))/( a^2 +b^2 +(√3)ab))  q+r−2(√(AD^2 −b^2 ))=p  ((2a(2a+(√3)b)(√(a^2 +(√3)ab)))/( a^2 +b^2 +(√3)ab))−2(√(a^2 +(√3)ab))=((4ab(√(a^2 +(√3)ab)))/(a^2 +b^2 +(√3)ab))  ((a(2a+(√3)b))/( a^2 +b^2 +(√3)ab))−1=((2ab)/(a^2 +b^2 +(√3)ab))  a^2 −2ab= b^2   ((b/a))^2 +2((b/a))−1=0  ⇒(b/a)=(√2)−1 ✓

$${AD}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\mathrm{30}° \\ $$$$\Rightarrow{AD}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}} \\ $$$$\mathrm{sin}\:\frac{{A}}{\mathrm{2}}=\frac{{b}}{{AD}}=\frac{{b}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}} \\ $$$$\mathrm{cos}\:\frac{{A}}{\mathrm{2}}=\frac{\sqrt{{a}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}} \\ $$$$\Rightarrow\mathrm{sin}\:{A}=\frac{\mathrm{2}{b}\sqrt{{a}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}} \\ $$$$\frac{{p}}{\mathrm{sin}\:{A}}=\mathrm{2}{a} \\ $$$$\Rightarrow{p}=\frac{\mathrm{4}{ab}\sqrt{{a}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}} \\ $$$$\frac{\mathrm{sin}\:\alpha}{{b}}=\frac{\mathrm{sin}\:\mathrm{30}°}{{AD}} \\ $$$$\Rightarrow\mathrm{sin}\:\alpha=\frac{{b}}{\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}} \\ $$$${r}=\mathrm{2}{a}\:\mathrm{cos}\:\left(\frac{{A}}{\mathrm{2}}−\alpha\right) \\ $$$${q}=\mathrm{2}{a}\:\mathrm{cos}\:\left(\frac{{A}}{\mathrm{2}}+\alpha\right) \\ $$$${q}+{r}=\mathrm{4}{a}\:\mathrm{cos}\:\frac{{A}}{\mathrm{2}}\:\mathrm{cos}\:\alpha=\mathrm{4}{a}×\frac{\sqrt{{a}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}}×\frac{\mathrm{2}{a}+\sqrt{\mathrm{3}}{b}}{\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}} \\ $$$${q}+{r}=\frac{\mathrm{2}{a}\left(\mathrm{2}{a}+\sqrt{\mathrm{3}}{b}\right)\sqrt{{a}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}}{\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}} \\ $$$${q}+{r}−\mathrm{2}\sqrt{{AD}^{\mathrm{2}} −{b}^{\mathrm{2}} }={p} \\ $$$$\frac{\mathrm{2}{a}\left(\mathrm{2}{a}+\sqrt{\mathrm{3}}{b}\right)\sqrt{{a}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}}{\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}−\mathrm{2}\sqrt{{a}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}=\frac{\mathrm{4}{ab}\sqrt{{a}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}} \\ $$$$\frac{{a}\left(\mathrm{2}{a}+\sqrt{\mathrm{3}}{b}\right)}{\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}}−\mathrm{1}=\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\sqrt{\mathrm{3}}{ab}} \\ $$$${a}^{\mathrm{2}} −\mathrm{2}{ab}=\:{b}^{\mathrm{2}} \\ $$$$\left(\frac{{b}}{{a}}\right)^{\mathrm{2}} +\mathrm{2}\left(\frac{{b}}{{a}}\right)−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\frac{{b}}{{a}}=\sqrt{\mathrm{2}}−\mathrm{1}\:\checkmark \\ $$

Commented by mr W last updated on 10/Jan/23

the result (b/a)=(√2)−1 is independent  from the angle 60°. an other example:

$${the}\:{result}\:\frac{{b}}{{a}}=\sqrt{\mathrm{2}}−\mathrm{1}\:{is}\:{independent} \\ $$$${from}\:{the}\:{angle}\:\mathrm{60}°.\:{an}\:{other}\:{example}: \\ $$

Commented by mr W last updated on 10/Jan/23

Commented by mr W last updated on 10/Jan/23

sin θ=(b/(a+b))  cos 2θ=((2b)/a)  ((2b)/a)=1−2((b/(a+b)))^2 =((a^2 −b^2 +2ab)/(a^2 +b^2 +2ab))  2b^3 +5ab^2 =a^3   λ^3 −5λ−2=0  (λ+2)(λ^2 −2λ−1)=0  ⇒λ=(a/b)=1+(√2)  ⇒(b/a)=(√2)−1 ✓

$$\mathrm{sin}\:\theta=\frac{{b}}{{a}+{b}} \\ $$$$\mathrm{cos}\:\mathrm{2}\theta=\frac{\mathrm{2}{b}}{{a}} \\ $$$$\frac{\mathrm{2}{b}}{{a}}=\mathrm{1}−\mathrm{2}\left(\frac{{b}}{{a}+{b}}\right)^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +\mathrm{2}{ab}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}} \\ $$$$\mathrm{2}{b}^{\mathrm{3}} +\mathrm{5}{ab}^{\mathrm{2}} ={a}^{\mathrm{3}} \\ $$$$\lambda^{\mathrm{3}} −\mathrm{5}\lambda−\mathrm{2}=\mathrm{0} \\ $$$$\left(\lambda+\mathrm{2}\right)\left(\lambda^{\mathrm{2}} −\mathrm{2}\lambda−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\lambda=\frac{{a}}{{b}}=\mathrm{1}+\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\frac{{b}}{{a}}=\sqrt{\mathrm{2}}−\mathrm{1}\:\checkmark \\ $$

Commented by MJS_new last updated on 10/Jan/23

this means if the center of the circumcircle  lies on the incircle the ratio of (r/R) is constant.  same as the distance of the centers of both  circles equals the radius of the incircle.  ⇒  if we let a≤b≤c and a=1  ⇒ 1≤b≤1+((√2)/2)∧(√2)≤c≤1+((√2)/2)  with the “borders” being the isosceles triangles  a=b=1∧c=(√2) and a=1∧b=c=1+((√2)/2).  can we prove there are no other triangles with  (r/R)=(√2)−1; meaning with the center of the  circumcircle not on the incircle?

$$\mathrm{this}\:\mathrm{means}\:\mathrm{if}\:\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circumcircle} \\ $$$$\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\:\mathrm{incircle}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\frac{{r}}{{R}}\:\mathrm{is}\:\mathrm{constant}. \\ $$$$\mathrm{same}\:\mathrm{as}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{the}\:\mathrm{centers}\:\mathrm{of}\:\mathrm{both} \\ $$$$\mathrm{circles}\:\mathrm{equals}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{incircle}. \\ $$$$\Rightarrow \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{let}\:{a}\leqslant{b}\leqslant{c}\:\mathrm{and}\:{a}=\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{1}\leqslant{b}\leqslant\mathrm{1}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\wedge\sqrt{\mathrm{2}}\leqslant{c}\leqslant\mathrm{1}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\mathrm{with}\:\mathrm{the}\:``\mathrm{borders}''\:\mathrm{being}\:\mathrm{the}\:\mathrm{isosceles}\:\mathrm{triangles} \\ $$$${a}={b}=\mathrm{1}\wedge{c}=\sqrt{\mathrm{2}}\:\mathrm{and}\:{a}=\mathrm{1}\wedge{b}={c}=\mathrm{1}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}. \\ $$$$\mathrm{can}\:\mathrm{we}\:\mathrm{prove}\:\mathrm{there}\:\mathrm{are}\:\mathrm{no}\:\mathrm{other}\:\mathrm{triangles}\:\mathrm{with} \\ $$$$\frac{{r}}{{R}}=\sqrt{\mathrm{2}}−\mathrm{1};\:\mathrm{meaning}\:\mathrm{with}\:\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{circumcircle}\:{not}\:\mathrm{on}\:\mathrm{the}\:\mathrm{incircle}? \\ $$

Commented by mr W last updated on 10/Jan/23

yes!  acc. to Euler′s theorem the distance  from incenter to circumcenter of an  arbitrary triangle is  d=(√(R^2 −2Rr))  when d=r, we always have  R^2 −2Rr=r^2   ⇒(r/R)=−1+(√2)  vice versa, if (r/R)=(√2)−1, we have  R^2 −2Rr=r^2 , then d=r, that means  circumcenter lies on the incircle.

$${yes}! \\ $$$${acc}.\:{to}\:{Euler}'{s}\:{theorem}\:{the}\:{distance} \\ $$$${from}\:{incenter}\:{to}\:{circumcenter}\:{of}\:{an} \\ $$$${arbitrary}\:{triangle}\:{is} \\ $$$${d}=\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Rr}} \\ $$$${when}\:{d}={r},\:{we}\:{always}\:{have} \\ $$$${R}^{\mathrm{2}} −\mathrm{2}{Rr}={r}^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{r}}{{R}}=−\mathrm{1}+\sqrt{\mathrm{2}} \\ $$$${vice}\:{versa},\:{if}\:\frac{{r}}{{R}}=\sqrt{\mathrm{2}}−\mathrm{1},\:{we}\:{have} \\ $$$${R}^{\mathrm{2}} −\mathrm{2}{Rr}={r}^{\mathrm{2}} ,\:{then}\:{d}={r},\:{that}\:{means} \\ $$$${circumcenter}\:{lies}\:{on}\:{the}\:{incircle}. \\ $$

Commented by mr W last updated on 10/Jan/23

Commented by MJS_new last updated on 10/Jan/23

thank you, I didn′t know this theorem

$$\mathrm{thank}\:\mathrm{you},\:\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{know}\:\mathrm{this}\:\mathrm{theorem} \\ $$

Commented by mr W last updated on 10/Jan/23

i once knew this theorem. but as i  tried to solve this question, i didn′t  have it in mind. otherwise i have had  taken a shortcut.

$${i}\:{once}\:{knew}\:{this}\:{theorem}.\:{but}\:{as}\:{i} \\ $$$${tried}\:{to}\:{solve}\:{this}\:{question},\:{i}\:{didn}'{t} \\ $$$${have}\:{it}\:{in}\:{mind}.\:{otherwise}\:{i}\:{have}\:{had} \\ $$$${taken}\:{a}\:{shortcut}. \\ $$

Commented by mr W last updated on 10/Jan/23

sir, have you got an idea how to solve  the equation system in Q184607   generally?

$${sir},\:{have}\:{you}\:{got}\:{an}\:{idea}\:{how}\:{to}\:{solve} \\ $$$${the}\:{equation}\:{system}\:{in}\:{Q}\mathrm{184607}\: \\ $$$${generally}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com