Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 184731 by Mastermind last updated on 11/Jan/23

Express this function in both its  Cartesian and polar form  f(z) = ze^(iz) .      Help!

$$\mathrm{Express}\:\mathrm{this}\:\mathrm{function}\:\mathrm{in}\:\mathrm{both}\:\mathrm{its} \\ $$$$\mathrm{Cartesian}\:\mathrm{and}\:\mathrm{polar}\:\mathrm{form} \\ $$$$\mathrm{f}\left(\mathrm{z}\right)\:=\:\mathrm{ze}^{\mathrm{iz}} . \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Answered by MJS_new last updated on 11/Jan/23

1^(st)  possibility  z=a+bi=(√(a^2 +b^2 ))e^(i arctan (b/a))   ⇒  f(z)=(√(a^2 +b^2 ))e^(i arctan (b/a)) e^(−b+ai) =  =((√(a^2 +b^2 ))/e^b )e^(i(a+arctan (b/a))) =  =((√(a^2 +b^2 ))/e^b )(cos (a+arctan (b/a)) +i sin (a+arctan (b/a)))    2^(nd)  possibility  z=re^(iθ) =rcos θ +irsin θ  ⇒  f(z)=re^(iθ) e^(−rsin θ +ircos θ) =  =(r/e^(rsin θ) )e^(i(θ+rcos θ)) =  =(r/e^(rsin θ) )(cos (θ+rcos θ) +i sin (θ+rcos θ))

$$\mathrm{1}^{\mathrm{st}} \:\mathrm{possibility} \\ $$$${z}={a}+{b}\mathrm{i}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\mathrm{e}^{\mathrm{i}\:\mathrm{arctan}\:\frac{{b}}{{a}}} \\ $$$$\Rightarrow \\ $$$${f}\left({z}\right)=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\mathrm{e}^{\mathrm{i}\:\mathrm{arctan}\:\frac{{b}}{{a}}} \mathrm{e}^{−{b}+{a}\mathrm{i}} = \\ $$$$=\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{\mathrm{e}^{{b}} }\mathrm{e}^{\mathrm{i}\left({a}+\mathrm{arctan}\:\frac{{b}}{{a}}\right)} = \\ $$$$=\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{\mathrm{e}^{{b}} }\left(\mathrm{cos}\:\left({a}+\mathrm{arctan}\:\frac{{b}}{{a}}\right)\:+\mathrm{i}\:\mathrm{sin}\:\left({a}+\mathrm{arctan}\:\frac{{b}}{{a}}\right)\right) \\ $$$$ \\ $$$$\mathrm{2}^{\mathrm{nd}} \:\mathrm{possibility} \\ $$$${z}={r}\mathrm{e}^{\mathrm{i}\theta} ={r}\mathrm{cos}\:\theta\:+\mathrm{i}{r}\mathrm{sin}\:\theta \\ $$$$\Rightarrow \\ $$$${f}\left({z}\right)={r}\mathrm{e}^{\mathrm{i}\theta} \mathrm{e}^{−{r}\mathrm{sin}\:\theta\:+\mathrm{i}{r}\mathrm{cos}\:\theta} = \\ $$$$=\frac{{r}}{\mathrm{e}^{{r}\mathrm{sin}\:\theta} }\mathrm{e}^{\mathrm{i}\left(\theta+{r}\mathrm{cos}\:\theta\right)} = \\ $$$$=\frac{{r}}{\mathrm{e}^{{r}\mathrm{sin}\:\theta} }\left(\mathrm{cos}\:\left(\theta+{r}\mathrm{cos}\:\theta\right)\:+\mathrm{i}\:\mathrm{sin}\:\left(\theta+{r}\mathrm{cos}\:\theta\right)\right) \\ $$

Commented by Mastermind last updated on 11/Jan/23

I′m just seeing your solution  Ok now, Assuming we were given   the value of θ.  how we want to do ordinary θ ?

$$\mathrm{I}'\mathrm{m}\:\mathrm{just}\:\mathrm{seeing}\:\mathrm{your}\:\mathrm{solution} \\ $$$$\mathrm{Ok}\:\mathrm{now},\:\mathrm{Assuming}\:\mathrm{we}\:\mathrm{were}\:\mathrm{given}\: \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\theta. \\ $$$$\mathrm{how}\:\mathrm{we}\:\mathrm{want}\:\mathrm{to}\:\mathrm{do}\:\mathrm{ordinary}\:\theta\:? \\ $$

Commented by MJS_new last updated on 11/Jan/23

sorry but I do not understand: what do you  mean with “ordinary θ”?

$$\mathrm{sorry}\:\mathrm{but}\:\mathrm{I}\:\mathrm{do}\:\mathrm{not}\:\mathrm{understand}:\:\mathrm{what}\:\mathrm{do}\:\mathrm{you} \\ $$$$\mathrm{mean}\:\mathrm{with}\:``\mathrm{ordinary}\:\theta''? \\ $$

Commented by MJS_new last updated on 19/Jan/23

well, simply insert the value of θ

$$\mathrm{well},\:\mathrm{simply}\:\mathrm{insert}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\theta \\ $$

Commented by Mastermind last updated on 19/Jan/23

I meant if the value of θ given, how are  going to do it in the answer you got

$$\mathrm{I}\:\mathrm{meant}\:\mathrm{if}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\theta\:\mathrm{given},\:\mathrm{how}\:\mathrm{are} \\ $$$$\mathrm{going}\:\mathrm{to}\:\mathrm{do}\:\mathrm{it}\:\mathrm{in}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{you}\:\mathrm{got} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com