Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 184738 by mnjuly1970 last updated on 11/Jan/23

  α  , β  are roots of  , x^( 2) −x−1=0  (  α > β ) and ,  t_( n) = ((α^( n) − β^( n) )/(α−β))   ( n ∈ N ), if , b_1 =1 , b_( n) = t_( n−1) +t_( n−2)      ( n ≥2 ) find the value of          S = Σ_(n=1) ^∞ (( b_( n) )/(10^( n) )) =?

$$ \\ $$ $$\alpha\:\:,\:\beta\:\:{are}\:{roots}\:{of}\:\:,\:{x}^{\:\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$ $$\left(\:\:\alpha\:>\:\beta\:\right)\:{and}\:,\:\:{t}_{\:{n}} =\:\frac{\alpha^{\:{n}} −\:\beta^{\:{n}} }{\alpha−\beta} \\ $$ $$\:\left(\:{n}\:\in\:\mathbb{N}\:\right),\:{if}\:,\:{b}_{\mathrm{1}} =\mathrm{1}\:,\:{b}_{\:{n}} =\:{t}_{\:{n}−\mathrm{1}} +{t}_{\:{n}−\mathrm{2}} \\ $$ $$\:\:\:\left(\:{n}\:\geqslant\mathrm{2}\:\right)\:{find}\:{the}\:{value}\:{of} \\ $$ $$\:\:\:\:\:\:\:\:\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{b}_{\:{n}} }{\mathrm{10}^{\:{n}} }\:=? \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$

Answered by mr W last updated on 11/Jan/23

α,β=((1±(√5))/2)  α+1=α^2   β+1=β^2   α+β=1  αβ=−1  (α−β)^2 =(α+β)^2 −4αβ=5  ⇒α−β=(√5)  t_n =((α^n −β^n )/(α−β))=(1/( (√5)))(α^n −β^n )  b_n =t_(n−1) +t_(n−2) =(1/( (√5)))(α^(n−1) +α^(n−2) −β^(n−1) +β^(n−2) )  =(1/( (√5)))(α^(n−2) (α+1)−β^(n−2) (β+1))  =(1/( (√5)))(α^n −β^n )  (b_n /(10^n ))=(1/( (√5)))[((α/(10)))^n −((β/(10)))^n ]  S=Σ_(n=1) ^∞ (b_n /(10^n ))=(1/( (√5)))(((α/(10))/(1−(α/(10))))−((β/(10))/(1−(β/(10)))))  =(1/( (√5)))((α/(10−α))−(β/(10−β)))  =((10(α−β))/( (√5)(100−10(α+β)+αβ)))  =((10)/(100−10−1))  =((10)/(89))

$$\alpha,\beta=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$ $$\alpha+\mathrm{1}=\alpha^{\mathrm{2}} \\ $$ $$\beta+\mathrm{1}=\beta^{\mathrm{2}} \\ $$ $$\alpha+\beta=\mathrm{1} \\ $$ $$\alpha\beta=−\mathrm{1} \\ $$ $$\left(\alpha−\beta\right)^{\mathrm{2}} =\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{4}\alpha\beta=\mathrm{5} \\ $$ $$\Rightarrow\alpha−\beta=\sqrt{\mathrm{5}} \\ $$ $${t}_{{n}} =\frac{\alpha^{{n}} −\beta^{{n}} }{\alpha−\beta}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\alpha^{{n}} −\beta^{{n}} \right) \\ $$ $${b}_{{n}} ={t}_{{n}−\mathrm{1}} +{t}_{{n}−\mathrm{2}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\alpha^{{n}−\mathrm{1}} +\alpha^{{n}−\mathrm{2}} −\beta^{{n}−\mathrm{1}} +\beta^{{n}−\mathrm{2}} \right) \\ $$ $$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\alpha^{{n}−\mathrm{2}} \left(\alpha+\mathrm{1}\right)−\beta^{{n}−\mathrm{2}} \left(\beta+\mathrm{1}\right)\right) \\ $$ $$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\alpha^{{n}} −\beta^{{n}} \right) \\ $$ $$\frac{{b}_{{n}} }{\mathrm{10}^{{n}} }=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left[\left(\frac{\alpha}{\mathrm{10}}\right)^{{n}} −\left(\frac{\beta}{\mathrm{10}}\right)^{{n}} \right] \\ $$ $${S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{b}_{{n}} }{\mathrm{10}^{{n}} }=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\frac{\frac{\alpha}{\mathrm{10}}}{\mathrm{1}−\frac{\alpha}{\mathrm{10}}}−\frac{\frac{\beta}{\mathrm{10}}}{\mathrm{1}−\frac{\beta}{\mathrm{10}}}\right) \\ $$ $$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\frac{\alpha}{\mathrm{10}−\alpha}−\frac{\beta}{\mathrm{10}−\beta}\right) \\ $$ $$=\frac{\mathrm{10}\left(\alpha−\beta\right)}{\:\sqrt{\mathrm{5}}\left(\mathrm{100}−\mathrm{10}\left(\alpha+\beta\right)+\alpha\beta\right)} \\ $$ $$=\frac{\mathrm{10}}{\mathrm{100}−\mathrm{10}−\mathrm{1}} \\ $$ $$=\frac{\mathrm{10}}{\mathrm{89}} \\ $$

Commented bymnjuly1970 last updated on 11/Jan/23

thank you so much sir  W

$${thank}\:{you}\:{so}\:{much}\:{sir}\:\:{W} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com