Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 184796 by Spillover last updated on 11/Jan/23

Evaluate   lim_(x→(π/6)) (((√3)sin x−cos x)/(x−(π/6)))

Evaluatelimxπ63sinxcosxxπ6

Commented by MJS_new last updated on 11/Jan/23

2

2

Commented by MJS_new last updated on 11/Jan/23

these are all easy with l′Ho^� pital

thesearealleasywithlHopital^

Answered by aba last updated on 12/Jan/23

let t=x−(π/6) ⇒ x=t+(π/6)  lim_(x→(π/6)) (((√3)sin(x)−cos(x))/(x−(π/6)))=lim_(t→0 ) (((√3)sin(t+(π/6))−cos(t+(π/6)))/t)                                                 =lim_(t→0) (((√3)(sin(t)cos((π/6))+cos(t)sin((π/6)))−(cos(t)cos((π/6))−sin(t)sin((π/6))))/t)                                                 =lim_(t→0) (((√3)((√3)sin(t)+cos(t))−((√3)cos(t)−sin(t)))/(2t))                                                 =lim_(t→0) ((3sin(t)+sin(t)+(√3)sin(t)−(√3)cos(t))/(2t))                                                 =lim_(t→0) ((4sin(t))/(2t))                                                 =2

lett=xπ6x=t+π6limxπ63sin(x)cos(x)xπ6=limt03sin(t+π6)cos(t+π6)t=limt03(sin(t)cos(π6)+cos(t)sin(π6))(cos(t)cos(π6)sin(t)sin(π6))t=limt03(3sin(t)+cos(t))(3cos(t)sin(t))2t=limt03sin(t)+sin(t)+3sin(t)3cos(t)2t=limt04sin(t)2t=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com