Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 1848 by 123456 last updated on 14/Oct/15

f_(n+1) (z+1)=[z−f_(n−1) (0)]f_n (z)  f_0 (z)=0  f_1 (z)=z+1  f_3 (z)=????

$${f}_{{n}+\mathrm{1}} \left({z}+\mathrm{1}\right)=\left[{z}−{f}_{{n}−\mathrm{1}} \left(\mathrm{0}\right)\right]{f}_{{n}} \left({z}\right) \\ $$$${f}_{\mathrm{0}} \left({z}\right)=\mathrm{0} \\ $$$${f}_{\mathrm{1}} \left({z}\right)={z}+\mathrm{1} \\ $$$${f}_{\mathrm{3}} \left({z}\right)=???? \\ $$

Answered by Rasheed Soomro last updated on 21/Oct/15

Note: Question has been chaged now and this answer  belongs to its first version.First three lines of the  following make the statement of original Question.  f_(n+1) (z+1)=[z−f_(n−1) (0)]f_n (z)............(I)  f_1 (z)=z+1⇒f(z+1)=z+2  f_3 (z)=????  −−−−−−−−−  Substituting n=0 in (I)  f_1 (z+1)=[z−f_(−1) (0)]f_0 (z)       ⇒z+2=[z−f_(−1) (0)]f_0 (z).................(A)  Subsgituting n=2 in (I)   f_3 (z+1)=[z−f_1 (0)]f_2 (z)       ⇒f_3 (z+1)=[z−1]f_2 (z).....................(B)  Substituting n=1 in (I)  f_2 (z+1)=[z−f_0 (0)]f_1 (z)         ⇒f_2 (z+1)=[z−f_0 (0)](z+1)..............(C)  (A) , (B) and (C) contain f_(−1) (0) , f_0 (z) ;  f_3 (z+1) , f_2 (z) ; f_2 (z+1) , f_0 (0)  Eleminating all other than f_3 (z+1) leads to  f_3 (z).For this more such equations  containing same function definitions  are required.  I think the definition of f_3 (z),   indepndant of any other function definition  is impossible.

$${Note}:\:{Question}\:{has}\:{been}\:{chaged}\:{now}\:{and}\:{this}\:{answer} \\ $$$${belongs}\:{to}\:{its}\:{first}\:{version}.{First}\:{three}\:{lines}\:{of}\:{the} \\ $$$${following}\:{make}\:{the}\:{statement}\:{of}\:{original}\:{Question}. \\ $$$${f}_{{n}+\mathrm{1}} \left({z}+\mathrm{1}\right)=\left[{z}−{f}_{{n}−\mathrm{1}} \left(\mathrm{0}\right)\right]{f}_{{n}} \left({z}\right)............\left(\mathrm{I}\right) \\ $$$${f}_{\mathrm{1}} \left({z}\right)={z}+\mathrm{1}\Rightarrow{f}\left({z}+\mathrm{1}\right)={z}+\mathrm{2} \\ $$$${f}_{\mathrm{3}} \left({z}\right)=???? \\ $$$$−−−−−−−−− \\ $$$${Substituting}\:{n}=\mathrm{0}\:{in}\:\left(\mathrm{I}\right) \\ $$$${f}_{\mathrm{1}} \left({z}+\mathrm{1}\right)=\left[{z}−{f}_{−\mathrm{1}} \left(\mathrm{0}\right)\right]{f}_{\mathrm{0}} \left({z}\right) \\ $$$$\:\:\:\:\:\Rightarrow{z}+\mathrm{2}=\left[{z}−{f}_{−\mathrm{1}} \left(\mathrm{0}\right)\right]{f}_{\mathrm{0}} \left({z}\right).................\left({A}\right) \\ $$$${Subsgituting}\:{n}=\mathrm{2}\:{in}\:\left(\mathrm{I}\right)\: \\ $$$${f}_{\mathrm{3}} \left({z}+\mathrm{1}\right)=\left[{z}−{f}_{\mathrm{1}} \left(\mathrm{0}\right)\right]{f}_{\mathrm{2}} \left({z}\right) \\ $$$$\:\:\:\:\:\Rightarrow{f}_{\mathrm{3}} \left({z}+\mathrm{1}\right)=\left[{z}−\mathrm{1}\right]{f}_{\mathrm{2}} \left({z}\right).....................\left({B}\right) \\ $$$${Substituting}\:{n}=\mathrm{1}\:{in}\:\left(\mathrm{I}\right) \\ $$$${f}_{\mathrm{2}} \left({z}+\mathrm{1}\right)=\left[{z}−{f}_{\mathrm{0}} \left(\mathrm{0}\right)\right]{f}_{\mathrm{1}} \left({z}\right) \\ $$$$\:\:\:\:\:\:\:\Rightarrow{f}_{\mathrm{2}} \left({z}+\mathrm{1}\right)=\left[{z}−{f}_{\mathrm{0}} \left(\mathrm{0}\right)\right]\left({z}+\mathrm{1}\right)..............\left({C}\right) \\ $$$$\left({A}\right)\:,\:\left({B}\right)\:{and}\:\left({C}\right)\:{contain}\:{f}_{−\mathrm{1}} \left(\mathrm{0}\right)\:,\:{f}_{\mathrm{0}} \left({z}\right)\:; \\ $$$${f}_{\mathrm{3}} \left({z}+\mathrm{1}\right)\:,\:{f}_{\mathrm{2}} \left({z}\right)\:;\:{f}_{\mathrm{2}} \left({z}+\mathrm{1}\right)\:,\:{f}_{\mathrm{0}} \left(\mathrm{0}\right) \\ $$$${Eleminating}\:{all}\:{other}\:{than}\:{f}_{\mathrm{3}} \left({z}+\mathrm{1}\right)\:{leads}\:{to} \\ $$$${f}_{\mathrm{3}} \left({z}\right).{For}\:{this}\:{more}\:{such}\:{equations} \\ $$$${containing}\:{same}\:{function}\:{definitions} \\ $$$${are}\:{required}. \\ $$$${I}\:{think}\:{the}\:{definition}\:{of}\:{f}_{\mathrm{3}} \left({z}\right),\: \\ $$$${indepndant}\:{of}\:{any}\:{other}\:{function}\:{definition} \\ $$$${is}\:{impossible}. \\ $$$$ \\ $$

Answered by Rasheed Soomro last updated on 20/Oct/15

f_(n+1) (z+1)=[z−f_(n−1) (0)]f_n (z).....................I  f_0 (z)=0⇒f_0 (0)=0  f_1 (z)=z+1⇒f_1 (0)=0+1=1  f_3 (z)=????  −−−−−−−−−−−−−−−−−−−  •Let n=1,substituting in  I  f_2 (z+1)=[z−f_0 (0)]f_1 (z)                   =(z−0)(z+1)=z(z+1)  ∗Let z=z−1  f_2 (z−1+1)=(z−1)(z−1+1)  f_2 (z)=z(z−1)  •Let n=2 , substituting in  I  f_3 (z+1)=[z−f_1 (0)]f_2 (z)                   =[z−1][z(z−1)]                   =z(z−1)^2   ∗Let z=z−1  f_3 (z−1+1)=(z−1)(z−1−1)^2   f_3 (z)=(z−1)(z−2)^2

$${f}_{{n}+\mathrm{1}} \left({z}+\mathrm{1}\right)=\left[{z}−{f}_{{n}−\mathrm{1}} \left(\mathrm{0}\right)\right]{f}_{{n}} \left({z}\right).....................{I} \\ $$$${f}_{\mathrm{0}} \left({z}\right)=\mathrm{0}\Rightarrow{f}_{\mathrm{0}} \left(\mathrm{0}\right)=\mathrm{0} \\ $$$${f}_{\mathrm{1}} \left({z}\right)={z}+\mathrm{1}\Rightarrow{f}_{\mathrm{1}} \left(\mathrm{0}\right)=\mathrm{0}+\mathrm{1}=\mathrm{1} \\ $$$${f}_{\mathrm{3}} \left({z}\right)=???? \\ $$$$−−−−−−−−−−−−−−−−−−− \\ $$$$\bullet{Let}\:{n}=\mathrm{1},{substituting}\:{in}\:\:{I} \\ $$$${f}_{\mathrm{2}} \left({z}+\mathrm{1}\right)=\left[{z}−{f}_{\mathrm{0}} \left(\mathrm{0}\right)\right]{f}_{\mathrm{1}} \left({z}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left({z}−\mathrm{0}\right)\left({z}+\mathrm{1}\right)={z}\left({z}+\mathrm{1}\right) \\ $$$$\ast{Let}\:{z}={z}−\mathrm{1} \\ $$$${f}_{\mathrm{2}} \left({z}−\mathrm{1}+\mathrm{1}\right)=\left({z}−\mathrm{1}\right)\left({z}−\mathrm{1}+\mathrm{1}\right) \\ $$$${f}_{\mathrm{2}} \left({z}\right)={z}\left({z}−\mathrm{1}\right) \\ $$$$\bullet{Let}\:{n}=\mathrm{2}\:,\:{substituting}\:{in}\:\:{I} \\ $$$${f}_{\mathrm{3}} \left({z}+\mathrm{1}\right)=\left[{z}−{f}_{\mathrm{1}} \left(\mathrm{0}\right)\right]{f}_{\mathrm{2}} \left({z}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left[{z}−\mathrm{1}\right]\left[{z}\left({z}−\mathrm{1}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={z}\left({z}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\ast{Let}\:{z}={z}−\mathrm{1} \\ $$$${f}_{\mathrm{3}} \left({z}−\mathrm{1}+\mathrm{1}\right)=\left({z}−\mathrm{1}\right)\left({z}−\mathrm{1}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$${f}_{\mathrm{3}} \left({z}\right)=\left({z}−\mathrm{1}\right)\left({z}−\mathrm{2}\right)^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com