Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 184891 by mathlove last updated on 13/Jan/23

lim_(x→π)  ((x−π)/(sinx))=?

limxπxπsinx=?

Answered by Mathspace last updated on 13/Jan/23

chang. x−π=t give  lim_(x→π) ((x−π)/(sinx))=lim_(t→0) (t/(sin(π+t)))  =−lim_(t→0) (t/(sint))=−1

chang.xπ=tgivelimxπxπsinx=limt0tsin(π+t)=limt0tsint=1

Answered by alephzero last updated on 13/Jan/23

lim_(x→π) ((x−π)/(sin x)) = lim_(x→π) (1/(cos x)) = (1/(−1)) = −1

limxπxπsinx=limxπ1cosx=11=1

Answered by TUN last updated on 14/Jan/23

=lim_(x→π)  ((−(π−x))/(sin(π−x)))  =−lim_(x→π)  ((π−x)/(sin(π−x)))  =−1

=limxπ(πx)sin(πx)=limxππxsin(πx)=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com