Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 184992 by SANOGO last updated on 15/Jan/23

prove that:  ∫_o ^1 ((sint)/(e^t −1))=Σ_(n=o)  (1/(n^2 +1))

$${prove}\:{that}: \\ $$$$\int_{{o}} ^{\mathrm{1}} \frac{{sint}}{{e}^{{t}} −\mathrm{1}}=\underset{{n}={o}} {\sum}\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} +\mathrm{1}} \\ $$

Answered by ARUNG_Brandon_MBU last updated on 15/Jan/23

∫_0 ^∞ ((sint)/(e^t −1))dt=∫_0 ^∞ ((e^(−t) sint)/(1−e^(−t) ))dt  =∫_0 ^∞ (e^(−t) sintΣ_(n=0) ^∞ e^(−nt) )dt=Σ_(n=0) ^∞ ∫_0 ^∞ e^(−(n+1)t) sintdt  =Σ_(n=0) ^∞ [(e^(−(n+1)t) /((n+1)^2 +1))(−(n+1)sint−cost)]_0 ^∞   =Σ_(n=0) ^∞ (1/((n+1)^2 +1))=Σ_(n=1) ^∞ (1/(n^2 +1))=(π/2)cothπ−(1/2)

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}{t}}{{e}^{{t}} −\mathrm{1}}{dt}=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} \mathrm{sin}{t}}{\mathrm{1}−{e}^{−{t}} }{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \left({e}^{−{t}} \mathrm{sin}{t}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−{nt}} \right){dt}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\infty} {e}^{−\left({n}+\mathrm{1}\right){t}} \mathrm{sin}{tdt} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\frac{{e}^{−\left({n}+\mathrm{1}\right){t}} }{\left({n}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}\left(−\left({n}+\mathrm{1}\right)\mathrm{sin}{t}−\mathrm{cos}{t}\right)\right]_{\mathrm{0}} ^{\infty} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} +\mathrm{1}}=\frac{\pi}{\mathrm{2}}\mathrm{coth}\pi−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by SANOGO last updated on 15/Jan/23

merci bien

$${merci}\:{bien} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com