Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 185058 by saboorhalimi last updated on 16/Jan/23

Answered by Frix last updated on 16/Jan/23

kcos nx +msin nx =(√(k^2 +m^2 ))sin (nx+tan^(−1)  (k/m))  Ω=(√(k^2 +m^2 ))∫_0 ^π ∣sin (nx+tan^(−1)  (k/m))∣dx=  =((√(k^2 +m^2 ))/n)×∫_(tan^(−1)  (k/m)) ^(nπ+tan^(−1)  (k/m)) ∣sin t∣ dt=  =((√(k^2 +m^2 ))/n) ×∫_0 ^(nπ) ∣sin t∣dt=(√(k^2 +m^2 ))∫_0 ^π sin t dt=  =2(√(k^2 +m^2 ))

$${k}\mathrm{cos}\:{nx}\:+{m}\mathrm{sin}\:{nx}\:=\sqrt{{k}^{\mathrm{2}} +{m}^{\mathrm{2}} }\mathrm{sin}\:\left({nx}+\mathrm{tan}^{−\mathrm{1}} \:\frac{{k}}{{m}}\right) \\ $$$$\Omega=\sqrt{{k}^{\mathrm{2}} +{m}^{\mathrm{2}} }\underset{\mathrm{0}} {\overset{\pi} {\int}}\mid\mathrm{sin}\:\left({nx}+\mathrm{tan}^{−\mathrm{1}} \:\frac{{k}}{{m}}\right)\mid{dx}= \\ $$$$=\frac{\sqrt{{k}^{\mathrm{2}} +{m}^{\mathrm{2}} }}{{n}}×\underset{\mathrm{tan}^{−\mathrm{1}} \:\frac{{k}}{{m}}} {\overset{{n}\pi+\mathrm{tan}^{−\mathrm{1}} \:\frac{{k}}{{m}}} {\int}}\mid\mathrm{sin}\:{t}\mid\:{dt}= \\ $$$$=\frac{\sqrt{{k}^{\mathrm{2}} +{m}^{\mathrm{2}} }}{{n}}\:×\underset{\mathrm{0}} {\overset{{n}\pi} {\int}}\mid\mathrm{sin}\:{t}\mid{dt}=\sqrt{{k}^{\mathrm{2}} +{m}^{\mathrm{2}} }\underset{\mathrm{0}} {\overset{\pi} {\int}}\mathrm{sin}\:{t}\:{dt}= \\ $$$$=\mathrm{2}\sqrt{{k}^{\mathrm{2}} +{m}^{\mathrm{2}} } \\ $$

Commented by saboorhalimi last updated on 16/Jan/23

    nice solution

$$\:\:\:\:\boldsymbol{{nice}}\:\boldsymbol{{solution}} \\ $$

Commented by Frix last updated on 16/Jan/23

Thank you, I added some lines.

$$\mathrm{Thank}\:\mathrm{you},\:\mathrm{I}\:\mathrm{added}\:\mathrm{some}\:\mathrm{lines}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com