Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 185087 by SEKRET last updated on 16/Jan/23

        (x^2 +x+1)^2 +(y^2 −y+1)^2 =2004^2          x;y∈Z         x;y=?

(x2+x+1)2+(y2y+1)2=20042x;yZx;y=?

Answered by floor(10²Eta[1]) last updated on 16/Jan/23

a≡0(mod8)⇒a^2 ≡0(mod8)  a≡1(mod8)⇒a^2 ≡1(mod8)  a≡2(mod8)⇒a^2 ≡4(mod8)  a≡3(mod8)⇒a^2 ≡1(mod8)  a≡4(mod8)⇒a^2 ≡0(mod8)  a≡5(mod8)⇒a^2 ≡1(mod8)  a≡6(mod8)⇒a^2 ≡4(mod8)  a≡7(mod8)⇒a^2 ≡1(mod8)    (x^2 +x+1)^2 +(y^2 −y+1)^2 ≡0(mod8)    1) x^2 +x+1≡0(mod8)∧y^2 −y+1≡4(mod8)  2) x^2 +x+1≡4(mod8)∧y^2 −y+1≡0(mod8)  3) x^2 +x+1≡2(mod8)∧y^2 −y+1≡6(mod8)  4) x^2 +x+1≡6(mod8)∧y^2 −y+1≡2(mod8)    1)no solution  2)no sol.  3)no sol.  4)no sol.

a0(mod8)a20(mod8)a1(mod8)a21(mod8)a2(mod8)a24(mod8)a3(mod8)a21(mod8)a4(mod8)a20(mod8)a5(mod8)a21(mod8)a6(mod8)a24(mod8)a7(mod8)a21(mod8)(x2+x+1)2+(y2y+1)20(mod8)1)x2+x+10(mod8)y2y+14(mod8)2)x2+x+14(mod8)y2y+10(mod8)3)x2+x+12(mod8)y2y+16(mod8)4)x2+x+16(mod8)y2y+12(mod8)1)nosolution2)nosol.3)nosol.4)nosol.

Commented by Rasheed.Sindhi last updated on 17/Jan/23

Why not  5) x^2 +x+1≡4(mod8)∧y^2 −y+1≡4(mod8) ?  However in this case also no solution

Whynot5)x2+x+14(mod8)y2y+14(mod8)?Howeverinthiscasealsonosolution

Answered by Frix last updated on 17/Jan/23

(x^2 +x+1)>0  (y^2 −y+1)>0  a^2 +b^2 =2004^2  with a, b ≠0  there′s no such Pythagorean triple ⇒  no solution

(x2+x+1)>0(y2y+1)>0a2+b2=20042witha,b0theresnosuchPythagoreantriplenosolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com