Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 185137 by emmanuelson123 last updated on 17/Jan/23

Answered by CElcedricjunior last updated on 17/Jan/23

montrons que ∀n∈IN  ((√3)/4)[(7+4(√3))^n −(7−4(√3))^n ]≡0[6]  posons p(n)=((√3)/4)[(7+4(√3))^n −(7−4(√3))^n ]  ∗pour n=0 on a   ((√3)/4)[(7+4(√3))^0 −(7−4(√3))^0 ]=((√3)/4)(1−1)=0≡0[6]  D′ou^�  p(0) vrai  ∗pour n≥0 supposons p(n) vraie et montrons que p(n+1) l′est aussi  au rang (n+1) on a  ((√3)/4)[(7+4(√3))^n −(7−4(√3))^n ]≡0[6]  =>(((√3)(7+4(√( 3)))^n )/4)≡((√3)/4)(7−4(√3))^n [6]  =>(7+4(√3))^n ≡(7−4(√3))^n [6]  =>(7+4(√3))^(n+1) ≡(7−4(√3))^(n−1) [6]  =>(7+4(√3))^(n+1) −(7−4(√3))^(n−1) ≡0[6]  =>((√3)/4)[(7+4(√3))^(n+1) −(7−4(√3))^(n+1) ]≡0[6] cas (7−4(√3))^(n−1) ≤(7−4(√3))^(n+1)   d′ou^�  p(n+1) vraie   donc ∀n∈IN  ((√3)/4)[(7+4(√3))^n −(7−4(√3))^n ]≡0[6]

montronsquenIN34[(7+43)n(743)n]0[6]posonsp(n)=34[(7+43)n(743)n]pourn=0ona34[(7+43)0(743)0]=34(11)=00[6]Dou`p(0)vraipourn0supposonsp(n)vraieetmontronsquep(n+1)lestaussiaurang(n+1)ona34[(7+43)n(743)n]0[6]=>3(7+43)n434(743)n[6]=>(7+43)n(743)n[6]=>(7+43)n+1(743)n1[6]=>(7+43)n+1(743)n10[6]=>34[(7+43)n+1(743)n+1]0[6]cas(743)n1(743)n+1dou`p(n+1)vraiedoncnINMissing \left or extra \right

Commented by aba last updated on 17/Jan/23

proof by recurence?

proofbyrecurence?

Answered by JDamian last updated on 17/Jan/23

S_n =(√3)[(7+4(√3))^n −(7−4(√3))^n ]=  =(√3)Σ[C_(n,k) ∙(7^(n−k) ∙(4(√3))^k ]   1≤k≤n  k=2p+1  S_n =Σ[C_(n,k) ∙(7^(n−k) ∙(√3)∙(4(√3))^k ]    (√3)∙(4(√3))^k =(√3)∙(4(√3))^(2p+1) =  =(√3)∙[(4(√3))^2 ]^p ∙4(√3)=  =48^p ∙12    S_n =Σ(C_(n,k) ∙7^(n−k) ∙48^p ∙12)  (48^p ∙12) mod 6 = 0   ⇒  S_n mod 6 = 0

Sn=3[(7+43)n(743)n]==3Σ[Cn,k(7nk(43)k]1knk=2p+1Sn=Σ[Cn,k(7nk3(43)k]3(43)k=3(43)2p+1==3[(43)2]p43==48p12Sn=Σ(Cn,k7nk48p12)(48p12)mod6=0Snmod6=0

Commented by aba last updated on 17/Jan/23

S_n =((√3)/4)....

Sn=34....

Commented by aba last updated on 17/Jan/23

   a^n −b^n =(a−b)(Σ_(k=0) ^(n−1) a^k b^(n−1−k) )  S_n =((√3)/4)[8(√3).(Σ_(k=0) ^(n−1) (7+4(√3))^k (7−4(√3))^(n−1−k) )]      =6(Σ_(k=0) ^(n−1) ((√3)+2)^(2k) ((√3)−2)^(2(n−1−k)) )     ≡0mod(6)

anbn=(ab)(n1k=0akbn1k)Sn=34[83.(n1k=0(7+43)k(743)n1k)]=6(n1k=0(3+2)2k(32)2(n1k))0mod(6)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com