Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 185198 by ajfour last updated on 18/Jan/23

Commented by ajfour last updated on 18/Jan/23

If   z=r+xi+yj  z^2 =r^2 −x^2 −y^2 +2r(xi+yj)            +xy(ij+ji)  let   ji=i   and  ij=j  ⇒  z^2 =r^2 −x^2 −y^2 +x(2r+y)i                      +y(2r+x)j  z^3 =r(r^2 −x^2 −y^2 )+rx(2x+y)i       +ry(2r+x)j+x(r^2 −x^2 −y^2 )i      −x^2 (2r+y)+xy(2r+x)j     +y(r^2 −x^2 −y^2 )j+xy(2r+y)i      −y^2 (2r+x)   z^3  =r^3 −r(3x^2 +3y^2 )−xy(x+y)  +i(r^2 −x^2 +2ry)x+j(r^2 −y^2 +2rx)y    ★

$${If}\:\:\:{z}={r}+{xi}+{yj} \\ $$$${z}^{\mathrm{2}} ={r}^{\mathrm{2}} −{x}^{\mathrm{2}} −{y}^{\mathrm{2}} +\mathrm{2}{r}\left({xi}+{yj}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:+{xy}\left({ij}+{ji}\right) \\ $$$${let}\:\:\:{ji}={i}\:\:\:{and}\:\:{ij}={j} \\ $$$$\Rightarrow\:\:{z}^{\mathrm{2}} ={r}^{\mathrm{2}} −{x}^{\mathrm{2}} −{y}^{\mathrm{2}} +{x}\left(\mathrm{2}{r}+{y}\right){i} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{y}\left(\mathrm{2}{r}+{x}\right){j} \\ $$$${z}^{\mathrm{3}} ={r}\left({r}^{\mathrm{2}} −{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)+{rx}\left(\mathrm{2}{x}+{y}\right){i} \\ $$$$\:\:\:\:\:+{ry}\left(\mathrm{2}{r}+{x}\right){j}+{x}\left({r}^{\mathrm{2}} −{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){i} \\ $$$$\:\:\:\:−{x}^{\mathrm{2}} \left(\mathrm{2}{r}+{y}\right)+{xy}\left(\mathrm{2}{r}+{x}\right){j} \\ $$$$\:\:\:+{y}\left({r}^{\mathrm{2}} −{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){j}+{xy}\left(\mathrm{2}{r}+{y}\right){i} \\ $$$$\:\:\:\:−{y}^{\mathrm{2}} \left(\mathrm{2}{r}+{x}\right) \\ $$$$\:{z}^{\mathrm{3}} \:={r}^{\mathrm{3}} −{r}\left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} \right)−{xy}\left({x}+{y}\right) \\ $$$$+{i}\left({r}^{\mathrm{2}} −{x}^{\mathrm{2}} +\mathrm{2}{ry}\right){x}+{j}\left({r}^{\mathrm{2}} −{y}^{\mathrm{2}} +\mathrm{2}{rx}\right){y} \\ $$$$ \\ $$$$\bigstar \\ $$

Commented by ajfour last updated on 18/Jan/23

Now if p^3 −p−c=0  with c<(2/(3(√3)))  then  p=((c/2)+i(√((1/(27))−(c^2 /4))))^(1/3)                     +((c/2)−j(√((1/(27))−(c^2 /4))))^(1/3)   for  c=(1/3)  p=((1/6)+(i/(6(√3))))^(1/3) +((1/6)−(j/(6(√3))))^(1/3)   p(√3)=(((√3)/2)+(i/2))^(1/3) +(((√3)/2)−(j/2))^(1/3)           =(w^3 )^(1/3) +(z^3 )^(1/3)   let   w=r_1 +xi+yj            z=r_2 −xi−yj  p(√3)=w+z=r_1 +r_2

$${Now}\:{if}\:{p}^{\mathrm{3}} −{p}−{c}=\mathrm{0}\:\:{with}\:{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$${then}\:\:{p}=\left(\frac{{c}}{\mathrm{2}}+{i}\sqrt{\frac{\mathrm{1}}{\mathrm{27}}−\frac{{c}^{\mathrm{2}} }{\mathrm{4}}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left(\frac{{c}}{\mathrm{2}}−{j}\sqrt{\frac{\mathrm{1}}{\mathrm{27}}−\frac{{c}^{\mathrm{2}} }{\mathrm{4}}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$${for}\:\:{c}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${p}=\left(\frac{\mathrm{1}}{\mathrm{6}}+\frac{{i}}{\mathrm{6}\sqrt{\mathrm{3}}}\right)^{\mathrm{1}/\mathrm{3}} +\left(\frac{\mathrm{1}}{\mathrm{6}}−\frac{{j}}{\mathrm{6}\sqrt{\mathrm{3}}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$${p}\sqrt{\mathrm{3}}=\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+\frac{{i}}{\mathrm{2}}\right)^{\mathrm{1}/\mathrm{3}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{{j}}{\mathrm{2}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:=\left({w}^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{3}} +\left({z}^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{3}} \\ $$$${let}\:\:\:{w}={r}_{\mathrm{1}} +{xi}+{yj} \\ $$$$\:\:\:\:\:\:\:\:\:\:{z}={r}_{\mathrm{2}} −{xi}−{yj} \\ $$$${p}\sqrt{\mathrm{3}}={w}+{z}={r}_{\mathrm{1}} +{r}_{\mathrm{2}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com