Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 185229 by Mingma last updated on 18/Jan/23

Answered by Rasheed.Sindhi last updated on 21/Jan/23

A_S =(n/2)[2c+2(n−1)]  G_S =((c(1−2^n ))/(1−2))  2∙A_S =G_S   2((n/2)[2c+2(n−1)])=((c(1−2^n ))/(1−2))  2cn+2n(n−1)=c(2^n −1)  c(2^n −1)−2cn=2n(n−1)  c(2^n −2n−1)=2n(n−1)  c=((2n(n−1))/(2^n −2n−1))  For c to be +ve integer   2^n −2n−1 ∣ 2n(n−1)  n=1:c=((2(1)(1−1))/(2^1 −2(1)−1))=0∉Z^+   n=2: c=((2(2)(2−1))/(2^2 −2(2)−1))=(4/(−1))=−4∉Z^+   n=3:c=((2(3)(3−1))/(2^3 −2(3)−1))=((12)/(8−6−1))=12✓  n=4:c=((2(4)(4−1))/(2^4 −2(4)−1))=((24)/7)∉Z^+   n=5:c=((2(5)(5−1))/(2^5 −2(5)−1))=((40)/(21))∉Z^+   n=6:c=((2(6)(6−1))/(2^6 −2(6)−1))=((60)/(51))∉Z^+   n>6: 2^n −2n−1>2n(n−1)   and hence 2^n −2n−1 ∤ 2n(n−1)  c=12 when n=3  Verification:  2(12+14+16)=^(?) 12+24+48              84=84

AS=n2[2c+2(n1)]GS=c(12n)122AS=GS2(n2[2c+2(n1)])=c(12n)122cn+2n(n1)=c(2n1)c(2n1)2cn=2n(n1)c(2n2n1)=2n(n1)c=2n(n1)2n2n1Forctobe+veinteger2n2n12n(n1)n=1:c=2(1)(11)212(1)1=0Z+n=2:c=2(2)(21)222(2)1=41=4Z+n=3:c=2(3)(31)232(3)1=12861=12n=4:c=2(4)(41)242(4)1=247Z+n=5:c=2(5)(51)252(5)1=4021Z+n=6:c=2(6)(61)262(6)1=6051Z+n>6:2n2n1>2n(n1)andhence2n2n12n(n1)c=12whenn=3Verification:2(12+14+16)=?12+24+4884=84

Terms of Service

Privacy Policy

Contact: info@tinkutara.com