Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 185953 by ajfour last updated on 30/Jan/23

Commented by ajfour last updated on 30/Jan/23

Would it be r≈0.432 ?

$${Would}\:{it}\:{be}\:{r}\approx\mathrm{0}.\mathrm{432}\:? \\ $$

Commented by TUN last updated on 30/Jan/23

S(triangle)=p×r  <=>(1/2)(√(1+r^2 ))×(√((1/x^2 )+1))=(((√(1+r^2 ))+(√((1/r^2 )+1))+r+(1/r))/2)×r  <=>r=0.4320408003

$${S}\left({triangle}\right)={p}×{r} \\ $$$$<=>\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{1}+{r}^{\mathrm{2}} }×\sqrt{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\mathrm{1}}=\frac{\sqrt{\mathrm{1}+{r}^{\mathrm{2}} }+\sqrt{\frac{\mathrm{1}}{{r}^{\mathrm{2}} }+\mathrm{1}}+{r}+\frac{\mathrm{1}}{{r}}}{\mathrm{2}}×{r} \\ $$$$<=>{r}=\mathrm{0}.\mathrm{4320408003} \\ $$$$ \\ $$

Commented by ajfour last updated on 30/Jan/23

thanks, I understand. wow!

$${thanks},\:{I}\:{understand}.\:{wow}! \\ $$

Answered by mr W last updated on 30/Jan/23

Commented by mr W last updated on 30/Jan/23

tan θ=(r/1)=r  cos θ=((r+(r/(tan (θ/2))))/((r/(tan (θ/2)))+(√(1+r^2 ))−r))  cos θ=((1+(1/(tan (θ/2))))/((1/(tan (θ/2)))+(√(1+(1/(tan^2  θ))))−1))  let t=tan (θ/2)  ((1−t^2 )/(1+t^2 ))=((1+t)/(1−t+t(√(1+(((1−t^2 )/(2t)))^2 ))))  t^3 −t^2 +5t−1=0  (s+(1/3))^3 −(s+(1/3))^2 +5(s+(1/3))−1=0  s^3 +((14s)/3)+((16)/(27))=0  s=((((2(√(78)))/9)−(8/(27))))^(1/3) −((((2(√(78)))/9)+(8/(27))))^(1/3)   t=(1/3)(1+((6(√(78))−8))^(1/3) −((6(√(78))+8))^(1/3) )    ≈0.206783  ⇒r=((2t)/(1−t^2 ))≈0.432

$$\mathrm{tan}\:\theta=\frac{{r}}{\mathrm{1}}={r} \\ $$$$\mathrm{cos}\:\theta=\frac{{r}+\frac{{r}}{\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}}{\frac{{r}}{\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}+\sqrt{\mathrm{1}+{r}^{\mathrm{2}} }−{r}} \\ $$$$\mathrm{cos}\:\theta=\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}}{\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}+\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\theta}}−\mathrm{1}} \\ $$$${let}\:{t}=\mathrm{tan}\:\frac{\theta}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }=\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}+{t}\sqrt{\mathrm{1}+\left(\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{2}{t}}\right)^{\mathrm{2}} }} \\ $$$${t}^{\mathrm{3}} −{t}^{\mathrm{2}} +\mathrm{5}{t}−\mathrm{1}=\mathrm{0} \\ $$$$\left({s}+\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{3}} −\left({s}+\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} +\mathrm{5}\left({s}+\frac{\mathrm{1}}{\mathrm{3}}\right)−\mathrm{1}=\mathrm{0} \\ $$$${s}^{\mathrm{3}} +\frac{\mathrm{14}{s}}{\mathrm{3}}+\frac{\mathrm{16}}{\mathrm{27}}=\mathrm{0} \\ $$$${s}=\sqrt[{\mathrm{3}}]{\frac{\mathrm{2}\sqrt{\mathrm{78}}}{\mathrm{9}}−\frac{\mathrm{8}}{\mathrm{27}}}−\sqrt[{\mathrm{3}}]{\frac{\mathrm{2}\sqrt{\mathrm{78}}}{\mathrm{9}}+\frac{\mathrm{8}}{\mathrm{27}}} \\ $$$${t}=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{1}+\sqrt[{\mathrm{3}}]{\mathrm{6}\sqrt{\mathrm{78}}−\mathrm{8}}−\sqrt[{\mathrm{3}}]{\mathrm{6}\sqrt{\mathrm{78}}+\mathrm{8}}\right) \\ $$$$\:\:\approx\mathrm{0}.\mathrm{206783} \\ $$$$\Rightarrow{r}=\frac{\mathrm{2}{t}}{\mathrm{1}−{t}^{\mathrm{2}} }\approx\mathrm{0}.\mathrm{432} \\ $$

Commented by ajfour last updated on 30/Jan/23

Thank you Sir. All correct!

$${Thank}\:{you}\:{Sir}.\:{All}\:{correct}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com