Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 186267 by TUN last updated on 02/Feb/23

lim_(x→0)  (((1+2016x)^(2017) −(1+2017x)^(2016) )/x^2 )  without L′H or series

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\mathrm{2016}{x}\right)^{\mathrm{2017}} −\left(\mathrm{1}+\mathrm{2017}{x}\right)^{\mathrm{2016}} }{{x}^{\mathrm{2}} } \\ $$$${without}\:{L}'{H}\:{or}\:{series} \\ $$

Commented by JDamian last updated on 02/Feb/23

use binomial expansion

Answered by mahdipoor last updated on 02/Feb/23

(1+ax)^b =1+b(ax)+((b(b−1))/2)(ax)^2   +x^2 (i_3 x+i_4 x^2 +...+i_b x^(b−2) )  ⇒A=(((1+2016x)^(2017) −(1+2017x)^(2016) )/x^2 )=  ((2017×2016×2016^2 −2016×2015×2017^2 )/2)+  (j_3 x+...+j_(2017) x^(2015) )  lim A , x→0=  ((2017×2016×2016^2 −2016×2015×2017^2 )/2)  ((2017×2016)/2)

$$\left(\mathrm{1}+{ax}\right)^{{b}} =\mathrm{1}+{b}\left({ax}\right)+\frac{{b}\left({b}−\mathrm{1}\right)}{\mathrm{2}}\left({ax}\right)^{\mathrm{2}} \\ $$$$+{x}^{\mathrm{2}} \left({i}_{\mathrm{3}} {x}+{i}_{\mathrm{4}} {x}^{\mathrm{2}} +...+{i}_{{b}} {x}^{{b}−\mathrm{2}} \right) \\ $$$$\Rightarrow{A}=\frac{\left(\mathrm{1}+\mathrm{2016}{x}\right)^{\mathrm{2017}} −\left(\mathrm{1}+\mathrm{2017}{x}\right)^{\mathrm{2016}} }{{x}^{\mathrm{2}} }= \\ $$$$\frac{\mathrm{2017}×\mathrm{2016}×\mathrm{2016}^{\mathrm{2}} −\mathrm{2016}×\mathrm{2015}×\mathrm{2017}^{\mathrm{2}} }{\mathrm{2}}+ \\ $$$$\left({j}_{\mathrm{3}} {x}+...+{j}_{\mathrm{2017}} {x}^{\mathrm{2015}} \right) \\ $$$${lim}\:{A}\:,\:{x}\rightarrow\mathrm{0}= \\ $$$$\frac{\mathrm{2017}×\mathrm{2016}×\mathrm{2016}^{\mathrm{2}} −\mathrm{2016}×\mathrm{2015}×\mathrm{2017}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{\mathrm{2017}×\mathrm{2016}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com