Question Number 186292 by ajfour last updated on 03/Feb/23

(x−p)(x^3 −x−(1/3))=0  x^4 −px^3 −x^2 +(p−(1/3))x+(p/3)=0  (x^2 +ax+h)(x^2 +bx+k)=0  a+b=−p  h+k+ab=−1  bh+ak=p−(1/3)  hk=(p/3)  −−−−−−  say ab=t  −−−−−−  ah+bk+p−(1/3)=p(1+t)  bh+ak−(p−(1/3))=0  ⇒ (a−b)(h−k)=pt−p+(2/3)  squaring  (p^2 −4t){(1+t)^2 −((4p)/3)}=(pt−p+(2/3))^2   say  t+1=z  (p^2 +4−4z)(z^2 −((4p)/3))=(pz−2p+(2/3))^2   ⇒  −4z^3 +(p^2 +4)z^2 +((16pz)/3)−((4p)/3)(p^2 +4)      =p^2 z^2 −4p(p−(1/3))z+4(p−(1/3))^2   ⇒ z^3 −z^2 −p(p+1)z+(p−(1/3))^2            +(p/3)(p^2 +4)=0  .....