Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 186302 by ajfour last updated on 03/Feb/23

Commented by ajfour last updated on 03/Feb/23

Can it be = (1/6) ?

$${Can}\:{it}\:{be}\:=\:\frac{\mathrm{1}}{\mathrm{6}}\:? \\ $$

Commented by Frix last updated on 04/Feb/23

The maximum area is reached when the  left vertice (with the right angle) is located  on the horizontal diameter of the circle.  The maximum area is (1/6).

$$\mathrm{The}\:\mathrm{maximum}\:\mathrm{area}\:\mathrm{is}\:\mathrm{reached}\:\mathrm{when}\:\mathrm{the} \\ $$$$\mathrm{left}\:\mathrm{vertice}\:\left(\mathrm{with}\:\mathrm{the}\:\mathrm{right}\:\mathrm{angle}\right)\:\mathrm{is}\:\mathrm{located} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{horizontal}\:\mathrm{diameter}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}. \\ $$$$\mathrm{The}\:\mathrm{maximum}\:\mathrm{area}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{6}}. \\ $$

Commented by Frix last updated on 04/Feb/23

Sorry I calculated with r=1 ⇒  maximum area =2 and then forgot a factor...

$$\mathrm{Sorry}\:\mathrm{I}\:\mathrm{calculated}\:\mathrm{with}\:{r}=\mathrm{1}\:\Rightarrow \\ $$$$\mathrm{maximum}\:\mathrm{area}\:=\mathrm{2}\:\mathrm{and}\:\mathrm{then}\:\mathrm{forgot}\:\mathrm{a}\:\mathrm{factor}... \\ $$

Answered by ajfour last updated on 04/Feb/23

Commented by ajfour last updated on 04/Feb/23

A=psin θ(pcos θ+(√(R^2 −p^2 sin^2 θ)))  here  p=2R ,  hence  (A/p^2 )(θ)=sin θcos θ+sin θ(√((1/4)−sin^2 θ))    (d/dθ)((A/(4R^2 )))=cos 2θ+cos θ(√((1/4)−sin^2 θ))                          −((sin^2 θcos θ)/( (√((1/4)−sin^2 θ))))    =0  ⇒  cos^2 2θ((1/4)−sin^2 θ)       =cos^2 θ(2sin^2 θ−(1/4))  say   sin^2 θ=s  ⇒  (1−2s)^2 ((1/4)−s)=(1−s)(2s−(1/4))  ⇒    s=(1/5)  ⇒  sin θ=(1/( (√5)))  ,  cos θ=(2/( (√5)))  Hence  (A_(max) /(4R^2 ))=(2/5)+(1/( (√5)))(√((1/4)−(1/5)))=(1/2)  and   2R(√3)=1  ⇒  A_(max) =(1/2)(4R^2 )=(1/2)((1/3))=(1/6)

$${A}={p}\mathrm{sin}\:\theta\left({p}\mathrm{cos}\:\theta+\sqrt{{R}^{\mathrm{2}} −{p}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}\right) \\ $$$${here}\:\:{p}=\mathrm{2}{R}\:,\:\:{hence} \\ $$$$\frac{{A}}{{p}^{\mathrm{2}} }\left(\theta\right)=\mathrm{sin}\:\theta\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{sin}\:^{\mathrm{2}} \theta} \\ $$$$\:\:\frac{{d}}{{d}\theta}\left(\frac{{A}}{\mathrm{4}{R}^{\mathrm{2}} }\right)=\mathrm{cos}\:\mathrm{2}\theta+\mathrm{cos}\:\theta\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{sin}\:^{\mathrm{2}} \theta} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\frac{\mathrm{sin}\:^{\mathrm{2}} \theta\mathrm{cos}\:\theta}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{sin}\:^{\mathrm{2}} \theta}}\:\:\:\:=\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{2}\theta\left(\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{sin}\:^{\mathrm{2}} \theta\right) \\ $$$$\:\:\:\:\:=\mathrm{cos}\:^{\mathrm{2}} \theta\left(\mathrm{2sin}\:^{\mathrm{2}} \theta−\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$${say}\:\:\:\mathrm{sin}\:^{\mathrm{2}} \theta={s} \\ $$$$\Rightarrow\:\:\left(\mathrm{1}−\mathrm{2}{s}\right)^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}−{s}\right)=\left(\mathrm{1}−{s}\right)\left(\mathrm{2}{s}−\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\Rightarrow\:\:\:\:{s}=\frac{\mathrm{1}}{\mathrm{5}}\:\:\Rightarrow\:\:\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\:\:,\:\:\mathrm{cos}\:\theta=\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}} \\ $$$${Hence} \\ $$$$\frac{{A}_{{max}} }{\mathrm{4}{R}^{\mathrm{2}} }=\frac{\mathrm{2}}{\mathrm{5}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{5}}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${and}\:\:\:\mathrm{2}{R}\sqrt{\mathrm{3}}=\mathrm{1} \\ $$$$\Rightarrow\:\:{A}_{{max}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{4}{R}^{\mathrm{2}} \right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)=\frac{\mathrm{1}}{\mathrm{6}} \\ $$

Commented by mr W last updated on 05/Feb/23

nice solution sir!

$${nice}\:{solution}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com