Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 18663 by Tinkutara last updated on 26/Jul/17

Find the product of 101 × 10001 ×  100000001 × ... × (1000...01) where the  last factor has 2^7  − 1 zeros between the  ones. Find the number of ones in the  product.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{101}\:×\:\mathrm{10001}\:× \\ $$$$\mathrm{100000001}\:×\:...\:×\:\left(\mathrm{1000}...\mathrm{01}\right)\:\mathrm{where}\:\mathrm{the} \\ $$$$\mathrm{last}\:\mathrm{factor}\:\mathrm{has}\:\mathrm{2}^{\mathrm{7}} \:−\:\mathrm{1}\:\mathrm{zeros}\:\mathrm{between}\:\mathrm{the} \\ $$$$\mathrm{ones}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ones}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{product}. \\ $$

Commented by diofanto last updated on 27/Jul/17

(10^2  + 1)×(10^2^2   + 1)×(10^2^3  + 1)×...×(10^2^7  +1)  every even number ≤ 2^8 −2 can be represented by  a sum of elements from the set {2,2^2 ,2^3 ,...,2^7 }.  The product is hence:  10^0  + 10^2  + 10^4  + ... + 10^(2^8 −2)    = 1010101...101 with 2^7  ones.  Note that, indeed, the product of 7 sums  with 2 terms each should have 2^7  terms.

$$\left(\mathrm{10}^{\mathrm{2}} \:+\:\mathrm{1}\right)×\left(\mathrm{10}^{\mathrm{2}^{\mathrm{2}} } \:+\:\mathrm{1}\right)×\left(\mathrm{10}^{\mathrm{2}^{\mathrm{3}} } +\:\mathrm{1}\right)×...×\left(\mathrm{10}^{\mathrm{2}^{\mathrm{7}} } +\mathrm{1}\right) \\ $$$$\mathrm{every}\:\mathrm{even}\:\mathrm{number}\:\leqslant\:\mathrm{2}^{\mathrm{8}} −\mathrm{2}\:\mathrm{can}\:\mathrm{be}\:\mathrm{represented}\:\mathrm{by} \\ $$$$\mathrm{a}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{elements}\:\mathrm{from}\:\mathrm{the}\:\mathrm{set}\:\left\{\mathrm{2},\mathrm{2}^{\mathrm{2}} ,\mathrm{2}^{\mathrm{3}} ,...,\mathrm{2}^{\mathrm{7}} \right\}. \\ $$$$\mathrm{The}\:\mathrm{product}\:\mathrm{is}\:\mathrm{hence}: \\ $$$$\mathrm{10}^{\mathrm{0}} \:+\:\mathrm{10}^{\mathrm{2}} \:+\:\mathrm{10}^{\mathrm{4}} \:+\:...\:+\:\mathrm{10}^{\mathrm{2}^{\mathrm{8}} −\mathrm{2}} \: \\ $$$$=\:\mathrm{1010101}...\mathrm{101}\:\mathrm{with}\:\mathrm{2}^{\mathrm{7}} \:\mathrm{ones}. \\ $$$$\mathrm{Note}\:\mathrm{that},\:\mathrm{indeed},\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{7}\:\mathrm{sums} \\ $$$$\mathrm{with}\:\mathrm{2}\:\mathrm{terms}\:\mathrm{each}\:\mathrm{should}\:\mathrm{have}\:\mathrm{2}^{\mathrm{7}} \:\mathrm{terms}. \\ $$

Commented by Tinkutara last updated on 28/Jul/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Answered by prakash jain last updated on 27/Jul/17

N=(10^2 +1)(10^2^2  +1)...(10^2^n  +1)  (10^2 −1)N=(10^2 −1)(10^2 +1)..(10^2^n  +1)  =10^2^(n+1)  −1  N=((10^2^(n+1)  −1)/(10^2 −1))  N=10^0 +10^2 +...+10^2^n

$$\mathrm{N}=\left(\mathrm{10}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{10}^{\mathrm{2}^{\mathrm{2}} } +\mathrm{1}\right)...\left(\mathrm{10}^{\mathrm{2}^{{n}} } +\mathrm{1}\right) \\ $$$$\left(\mathrm{10}^{\mathrm{2}} −\mathrm{1}\right)\mathrm{N}=\left(\mathrm{10}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{10}^{\mathrm{2}} +\mathrm{1}\right)..\left(\mathrm{10}^{\mathrm{2}^{{n}} } +\mathrm{1}\right) \\ $$$$=\mathrm{10}^{\mathrm{2}^{{n}+\mathrm{1}} } −\mathrm{1} \\ $$$$\mathrm{N}=\frac{\mathrm{10}^{\mathrm{2}^{{n}+\mathrm{1}} } −\mathrm{1}}{\mathrm{10}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\mathrm{N}=\mathrm{10}^{\mathrm{0}} +\mathrm{10}^{\mathrm{2}} +...+\mathrm{10}^{\mathrm{2}^{{n}} } \\ $$

Commented by Tinkutara last updated on 28/Jul/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com