Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 186732 by mr W last updated on 09/Feb/23

Answered by mr W last updated on 09/Feb/23

let′s generally find the maximum of  S=a_1 +a_2 +...+a_n =Σ_(k=1) ^n a_k   with  (a_1 )^2 +(2a_2 )^2 +...+(na_n )^2 =Σ_(k=1) ^n (ka_k )^2 =T    F=a_1 +a_2 +...+a_n +λ[(a_1 )^2 +(2a_2 )^2 +...+(na_n )^2 −T]  (∂F/∂a_k )=1+2λk^2 a_k =0  ⇒a_k =−(1/(2λk^2 ))  Σ_(k=1) ^n (ka_k )^2 =T  Σ_(k=1) ^n (−(1/(2λk)))^2 =T  (1/(4λ^2 ))Σ_(k=1) ^n (1/k^2 )=T  ⇒λ=±(1/2)(√((Σ_(k=1) ^n (1/k^2 ))/T))  ⇒a_k =±(1/k^2 )(√(T/(Σ_(k=1) ^n (1/k^2 ))))  for a_k >0, a_k =(1/k^2 )(√(T/(Σ_(k=1) ^n (1/k^2 ))))  ⇒S_(max) =Σ_(k=1) ^n a_k =(√(T/(Σ_(k=1) ^n (1/k^2 ))))Σ_(k=1) ^n (1/k^2 )                =(√(TΣ_(k=1) ^n (1/k^2 )))  in current case: n=50, T=42925  ⇒S_(max) =(√(42925Σ_(k=1) ^(50) (1/k^2 )))                ≈264.119

letsgenerallyfindthemaximumofS=a1+a2+...+an=nk=1akwith(a1)2+(2a2)2+...+(nan)2=nk=1(kak)2=TF=a1+a2+...+an+λ[(a1)2+(2a2)2+...+(nan)2T]Fak=1+2λk2ak=0ak=12λk2nk=1(kak)2=Tnk=1(12λk)2=T14λ2nk=11k2=Tλ=±12nk=11k2Tak=±1k2Tnk=11k2forak>0,ak=1k2Tnk=11k2Smax=nk=1ak=Tnk=11k2nk=11k2=Tnk=11k2incurrentcase:n=50,T=42925Smax=4292550k=11k2264.119

Answered by qaz last updated on 09/Feb/23

a_1 +a_2 +...+a_(50)   =(1/1)∙(1∙a_1 )+(1/2)(2a_2 )+(1/3)(3a_3 )+...+(1/(50))(50a_(50) )  ≤(√(((1/1))^2 +((1/2))^2 +...+((1/(50)))^2 ))∙(√((1∙a_1 )^2 +(2a_2 )^2 +...+(50a_(50) )^2 ))  =(√(42925Σ_(k=1) ^(50) (1/k^2 )))

a1+a2+...+a50=11(1a1)+12(2a2)+13(3a3)+...+150(50a50)(11)2+(12)2+...+(150)2(1a1)2+(2a2)2+...+(50a50)2=4292550k=11k2

Commented by qaz last updated on 09/Feb/23

prove  ::  a_1 b_1 +a_2 b_2 +...+a_n b_n ≤(√(a_1 ^2 +a_2 ^2 +...+a_n ^2 ))∙(√(b_1 ^2 +b_2 ^2 +...+b_n ^2 ))  ???  a^→ =(a_1 ,a_2 ,...,a_n )   ,   b^→ =(b_1 ,b_2 ,...,b_n )  a^→ ∙b^→ =∣a^→ ∣∣b^→ ∣cos (a^→ ,b^→ )  ⇒a^→ ∙b^→ ≤∣a^→ ∣∣b^→ ∣  ⇒a_1 b_1 +a_2 b_2 +...+a_n b_n ≤(√(a_1 ^2 +a_2 ^2 +...+a_n ^2 ))∙(√(b_1 ^2 +b_2 ^2 +...+b_n ^2 ))

prove::a1b1+a2b2+...+anbna12+a22+...+an2b12+b22+...+bn2???a=(a1,a2,...,an),b=(b1,b2,...,bn)ab=∣a∣∣bcos(a,b)ab⩽∣a∣∣ba1b1+a2b2+...+anbna12+a22+...+an2b12+b22+...+bn2

Commented by mr W last updated on 09/Feb/23

nice approach!

niceapproach!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com