Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 186758 by EnterUsername last updated on 09/Feb/23

If [t] denotes the integral part of t, then lim_(x→1) [x sin πx]  (A)  equals 1                               (B)  equals −1  (C)  equals 0                               (D) does not exist

If[t]denotestheintegralpartoft,thenlimx1[xsinπx](A)equals1(B)equals1(C)equals0(D)doesnotexist

Answered by Gazella thomsonii last updated on 10/Feb/23

lim_(x→1)  ∫ xsin(πx)dx=lim_(x→1)  ((1/π))^2 ∙(sin(πx)−πxcos(πx)  (1/π^2 )    (D)∙∙∙∙ Dosen′t Exist

limx1xsin(πx)dx=limx1(1π)2(sin(πx)πxcos(πx)1π2(D)DosentExist

Answered by mr W last updated on 10/Feb/23

lim_(x→1^− ) [x sin πx]=0  lim_(x→1^+ ) [x sin πx]=−1  ⇒lim_(x→1) [x sin πx] doesn′t exist!

limx1[xsinπx]=0limx1+[xsinπx]=1limx1[xsinπx]doesntexist!

Commented by EnterUsername last updated on 10/Feb/23

Thank you, Sir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com