Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 18693 by Arnab Maiti last updated on 27/Jul/17

prove that 2tan^(−1) [tan(α/2)tan((π/4)−(β/2))]  =tan^(−1) (((sinα cosβ)/(cosα +sinβ)))

$$\mathrm{prove}\:\mathrm{that}\:\mathrm{2tan}^{−\mathrm{1}} \left[\mathrm{tan}\frac{\alpha}{\mathrm{2}}\mathrm{tan}\left(\frac{\pi}{\mathrm{4}}−\frac{\beta}{\mathrm{2}}\right)\right] \\ $$$$=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{sin}\alpha\:\mathrm{cos}\beta}{\mathrm{cos}\alpha\:+\mathrm{sin}\beta}\right) \\ $$

Answered by 951172235v last updated on 01/Feb/19

tan (Θ/(2 )) =tan (α/2) tan ((Λ^− /4) −(β/2)) =((tan (α/2)(1−tan (β/2)))/((1+tan (β/2))))  tan Θ = ((2tan (Θ/2))/(1−tan^2 (Θ/2))) = ((2tan (α/2)(1−tan^2 (β/2)))/((1−tan (β/2))^2 −tan^2 (α/2)(1+tan (β/2))^2 ))              = ((2tan (α/2)(1−tan^2 (β/2)))/((1−tan^2 (α/2))(1+tan^2 (β/2)) + 2tan (β/2)(1+tan^2 (α/2))))  Dividing by (1+tan^2 (α/2))(1+tan^2 (β/2))  tan Θ = ((sin α cos β)/(cos α+sin β))  Θ= tan^(−1) (((sin αcos β)/(cos α+sin β)))

$$\mathrm{tan}\:\frac{\Theta}{\mathrm{2}\:}\:=\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\:\mathrm{tan}\:\left(\frac{\overset{−} {\Lambda}}{\mathrm{4}}\:−\frac{\beta}{\mathrm{2}}\right)\:=\frac{\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\left(\mathrm{1}−\mathrm{tan}\:\frac{\beta}{\mathrm{2}}\right)}{\left(\mathrm{1}+\mathrm{tan}\:\frac{\beta}{\mathrm{2}}\right)} \\ $$$$\mathrm{tan}\:\Theta\:=\:\frac{\mathrm{2tan}\:\frac{\Theta}{\mathrm{2}}}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \frac{\Theta}{\mathrm{2}}}\:=\:\frac{\mathrm{2tan}\:\frac{\alpha}{\mathrm{2}}\left(\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \frac{\beta}{\mathrm{2}}\right)}{\left(\mathrm{1}−\mathrm{tan}\:\frac{\beta}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{tan}\:^{\mathrm{2}} \frac{\alpha}{\mathrm{2}}\left(\mathrm{1}+\mathrm{tan}\:\frac{\beta}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{2tan}\:\frac{\alpha}{\mathrm{2}}\left(\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \frac{\beta}{\mathrm{2}}\right)}{\left(\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \frac{\alpha}{\mathrm{2}}\right)\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \frac{\beta}{\mathrm{2}}\right)\:+\:\mathrm{2tan}\:\frac{\beta}{\mathrm{2}}\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \frac{\alpha}{\mathrm{2}}\right)} \\ $$$$\mathrm{Dividing}\:\mathrm{by}\:\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \frac{\alpha}{\mathrm{2}}\right)\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \frac{\beta}{\mathrm{2}}\right) \\ $$$$\mathrm{tan}\:\Theta\:=\:\frac{\mathrm{sin}\:\alpha\:\mathrm{cos}\:\beta}{\mathrm{cos}\:\alpha+\mathrm{sin}\:\beta} \\ $$$$\Theta=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{sin}\:\alpha\mathrm{cos}\:\beta}{\mathrm{cos}\:\alpha+\mathrm{sin}\:\beta}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com