Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 187317 by ajfour last updated on 15/Feb/23

∫(dx/(x(√(1−2x))))

dxx12x

Answered by MJS_new last updated on 15/Feb/23

∫(dx/(x(√(1−2x))))=       [t=(√(1−2x)) → dx=−(√(1−2x))dt]  =2∫(dt/(t^2 −1))=ln ((t−1)/(t+1)) =  =ln ∣((1−(√(1−2x)))/(1+(√(1−2x))))∣ +C

dxx12x=[t=12xdx=12xdt]=2dtt21=lnt1t+1==ln112x1+12x+C

Commented by ajfour last updated on 16/Feb/23

thank you, i shall make good use  of it!

thankyou,ishallmakegooduseofit!

Answered by Humble last updated on 16/Feb/23

let u = 1−2x  ∫(1/( (√u)(u−1)))du  let s=(√u) ==> u=s^2   ds =(1/(2(√u)))du ==> du=2(√(u ))ds  ∫((2(√u))/( (√u)(s^2 −1)))ds  ∫(2/((s^2 −1)))ds  2∫(1/((s^2 −1)))ds  ==> 2[−(((ln∣s+1∣)/2)−((ln∣s−1∣)/2))]  s=(√u)==> u=(√(1−2x))  −ln∣(√(1−2x))+1∣ +ln∣(√(1−2x))−1∣  ln∣(√(1−2x))−1∣ − ln∣(√(1−2x))+1∣+C

letu=12x1u(u1)dulets=u==>u=s2ds=12udu==>du=2uds2uu(s21)ds2(s21)ds21(s21)ds==>2[(lns+12lns12)]s=u==>u=12xln12x+1+ln12x1ln12x1ln12x+1+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com