All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 187330 by Humble last updated on 16/Feb/23
showthat1−cosθ1+cosθ=tan2(12θ)
Answered by Frix last updated on 16/Feb/23
Whatareweallowedtouse?tan2x=sin2xcos2x=1−cos2x21+cos2x2=1−cos2x1+cos2x⇒1−cosθ1+cosθ=1−cosθ21+cosθ2=sin2θ2cos2θ2=tan2θ2orcosθ=eiθ+e−iθ2=1+e2iθ2eiθsinθ=1−e2iθ2eiθi1−cosθ1+cosθ=−(1−eiθ)22eiθ(1+eiθ)22eiθ=−(1−eiθ1+eiθ)2==(1−eiθ1+eiθi)2=(1−e2iθ21+e2iθ2i)2=(1−e2iθ22eiθ2i1+e2iθ22eiθ2)2==(sinθ2cosθ2)2=tan2θ2
Commented by Humble last updated on 16/Feb/23
awesome!!.thankyou,sir
Commented by Frix last updated on 16/Feb/23
��
Terms of Service
Privacy Policy
Contact: info@tinkutara.com