Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 187355 by mr W last updated on 16/Feb/23

Commented by mr W last updated on 17/Feb/23

find the maximum and minimum  possible deflection in the middle  of the uniform thin rope with length  L.  the friction coefficient between the  rope and the fixed pulleys with   radius r is μ.

findthemaximumandminimumpossibledeflectioninthemiddleoftheuniformthinropewithlengthL.thefrictioncoefficientbetweentheropeandthefixedpulleyswithradiusrisμ.

Commented by Humble last updated on 16/Feb/23

I look up to my superiors  for  the solution

Ilookuptomysuperiorsforthesolution

Answered by mr W last updated on 19/Feb/23

Commented by mr W last updated on 19/Feb/23

T_1 =T_2 e^(μ((π/2)+θ)) =ρghe^(μ((π/2)+θ))   T_0 =T_1 cos θ  a=(T_0 /(ρg))=he^(μ((π/2)+θ)) cos θ  x_B =(d/2)−r sin θ  y_B =a+f−(1−cos θ)r  s_(AB) =(L/2)−h−((π/2)+θ)r  eqn. of catenary:  y=a cosh (x/a)  at point B:  y_B =a cosh (((d/2)−r sin θ)/a)=a+f−(1−cos θ)r  s=a sinh (((d/2)−r sin θ)/a)=(L/2)−h−((π/2)+θ)r  tan θ=sinh (((d/2)−r sin θ)/a)  tan θ=sinh (((d/2)−r sin θ)/(he^(μ((π/2)+θ)) cos θ))  ⇒h=(((d/2)−r sin θ)/([sinh^(−1)  (tan θ)] e^(μ((π/2)+θ)) cos θ))  he^(μ((π/2)+θ)) cos θ tan θ=(L/2)−h−((π/2)+θ)r  h[1+e^(μ((π/2)+θ)) sin θ]=(L/2)−((π/2)+θ)r  ⇒h=((((L−πr)/2)−θr)/(1+e^(μ((π/2)+θ)) sin θ))   determinant (((((((L−πr)/2)−θr)/(1+e^(μ((π/2)+θ)) sin θ))=(((d/2)−r sin θ)/([sinh^(−1)  (tan θ)] e^(μ((π/2)+θ)) cos θ)))))  we get two solutions for 0<θ<(π/2). one  for f_(max)  and the other for f_(min) .  f=a(cosh (((d/2)−r sin θ)/a)−1)+(1−cos θ)r   determinant (((f=[((((L−πr)/2)−θr)/(e^(−μ((π/2)+θ)) +sin θ))+r](1−cos θ))))

T1=T2eμ(π2+θ)=ρgheμ(π2+θ)T0=T1cosθa=T0ρg=heμ(π2+θ)cosθxB=d2rsinθyB=a+f(1cosθ)rsAB=L2h(π2+θ)reqn.ofcatenary:y=acoshxaatpointB:yB=acoshd2rsinθa=a+f(1cosθ)rs=asinhd2rsinθa=L2h(π2+θ)rtanθ=sinhd2rsinθatanθ=sinhd2rsinθheμ(π2+θ)cosθh=d2rsinθ[sinh1(tanθ)]eμ(π2+θ)cosθheμ(π2+θ)cosθtanθ=L2h(π2+θ)rh[1+eμ(π2+θ)sinθ]=L2(π2+θ)rh=Lπr2θr1+eμ(π2+θ)sinθLπr2θr1+eμ(π2+θ)sinθ=d2rsinθ[sinh1(tanθ)]eμ(π2+θ)cosθwegettwosolutionsfor0<θ<π2.oneforfmaxandtheotherforfmin.f=a(coshd2rsinθa1)+(1cosθ)rf=[Lπr2θreμ(π2+θ)+sinθ+r](1cosθ)

Commented by mr W last updated on 17/Feb/23

Commented by mr W last updated on 17/Feb/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com