Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 187362 by ajfour last updated on 16/Feb/23

Commented by ajfour last updated on 16/Feb/23

blue curve:  y=x^3 −x  black one:    y=x^3 −x+k  Find the equation of the shown  common tangent.

bluecurve:y=x3xblackone:y=x3x+kFindtheequationoftheshowncommontangent.

Answered by a.lgnaoui last updated on 17/Feb/23

Blue[curve     y_1 =x^3 −x  the equation of  tangente is  (dy/dx)=3x^2 −1  y has mean[and max to x:  x_(1m) =(1/( (√3)))    and x_(1max) =((−1)/( (√3)))  point M_(12) (((−1)/( (√3))),(2/( 3(√3))))  N_(12) ((1/( (√3))),((−2)/(3(√3))))  the red  line tengente also to  blue and black[curve  y_2 =x^3 −x+k   same[(x min,x max)    (((−1)/( (√3))),(2/( (√3)))+k)    ,((1/( (√3))),k−(2/( (√3))))  y_2 (0)=k  the equation y=ax+b of tengente  must verifie:  M_1 (((−1)/( (√3))),(2/(3(√3))))    and   N((1/( (√3))),k−(2/( (√3))))   { (((2/( (√3)))       =((−1)/( (√3)))a+b    (1))),((k−(2/( (√3)))=(a/( (√3)))+b       (2))) :}  (1)+(2)    ⇒k=2b       b=(k/2).  (2)−(1)    ⇒k−(4/( (√3)))=((2a)/( (√3)))                           a=(k/2)(√3) −2  •Equation of tengente:        y=((k/2)(√3) −2)x+(k/2)              with  k=y_2 (1)  ;      k>1

Blue[curvey1=x3xtheequationoftangenteisdydx=3x21yhasmean[andmaxtox:x1m=13andx1max=13pointM12(13,233)N12(13,233)theredlinetengentealsotoblueandblack[curvey2=x3x+ksame[(xmin,xmax)(13,23+k),(13,k23)y2(0)=ktheequationy=ax+boftengentemustverifie:M1(13,233)andN(13,k23){23=13a+b(1)k23=a3+b(2)(1)+(2)k=2bb=k2.(2)(1)k43=2a3a=k232Equationoftengente:y=(k232)x+k2withk=y2(1);k>1

Commented by a.lgnaoui last updated on 17/Feb/23

k∈R    not specified!  tengente[here dependant  of y_1 ,y_2

kRnotspecified!tengente[heredependantofy1,y2

Answered by ajfour last updated on 17/Feb/23

Tangent  y=mx+(k/2)    (symmetry!)  Intersection?with curve    y=x^3 −x=mx+(k/2)  x^3 −x=mx+(k/2)  x^3 −(m+1)x−(k/2)=0  tangency ⇒double root ⇒ D=0  (k^2 /(16))=(((m+1)^3 )/(27))  ⇒  m=(3/4)(4k^2 )^(1/3) −1  Hence eq. common  tangent  y=((3/4)(4k^2 )^(1/3) −1)x+(k/2)

Tangenty=mx+k2(symmetry!)Intersection?withcurvey=x3x=mx+k2x3x=mx+k2x3(m+1)xk2=0tangencydoublerootD=0k216=(m+1)327m=34(4k2)1/31Henceeq.commontangenty=(34(4k2)1/31)x+k2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com