Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 187388 by ajfour last updated on 16/Feb/23

p^3 +q^3 =c   ,  pq=(1/3)   ∀   0<c<(2/(3(√3)))  Find p+q.

p3+q3=c,pq=130<c<233 Findp+q.

Answered by anurup last updated on 17/Feb/23

  (p+q)^3 −3pq(p+q)=c  x^3 −x−c=0,x=p+q  x=u+v  ⇒x^3 =u^3 +v^3 +3uvx  ⇒x^3 −3uvx−(u^3 +v^3 )=0  ∴uv=(1/3) and u^3 +v^3 =c  (u^3 −v^3 )^2 =(u^3 +v^3 )^2 −4u^3 v^3   ⇒(u^3 −v^3 )=±(√(c^2 −(4/(27))))  ∴u^3 =(1/2)(c±(√(c^2 −(4/(27)))) ),v^3 =(1/2)(c∓(√(c^2 −(4/(27)))))  ∵u^3 v^3 =(1/(27)), u^3 =(1/2)(c+(√(c^2 −(4/(27)))) ),v^3 =(1/2)(c−(√(c^2 −(4/(27)))) )  ∵0<c<(2/(3(√3))), c^2 <(4/(27))  ∴u^3 =(1/2)(c+i(√((4/(27))−c^2  )) ),v^3 =(1/2)(c−i(√((4/(27))−c^2  )) )  u=(1/( (√3)))(cos θ+isin θ)^(1/3) , v=(1/( (√)3))(cos θ−isin θ)^(1/3) where tan θ=((√((4/(27))−c^2 ))/c)  u=(1/( (√)3)){cos (((θ+2kπ))/3)+isin (((θ+2kπ))/3)},v=(1/( (√3))){cos (((θ+2kπ))/3)−isin (((θ+2kπ))/3)},k=0,1,2  For each value of k we will get an ordered pair(u,v)  each of which corresponds to a value of x,   θ=tan^(−1) ((√((4/(27))−c^2 ))/c)

(p+q)33pq(p+q)=c x3xc=0,x=p+q x=u+v x3=u3+v3+3uvx x33uvx(u3+v3)=0 uv=13andu3+v3=c (u3v3)2=(u3+v3)24u3v3 (u3v3)=±c2427 u3=12(c±c2427),v3=12(cc2427) u3v3=127,u3=12(c+c2427),v3=12(cc2427) 0<c<233,c2<427 u3=12(c+i427c2),v3=12(ci427c2) u=13(cosθ+isinθ)13,v=13(cosθisinθ)13wheretanθ=427c2c u=13{cos(θ+2kπ)3+isin(θ+2kπ)3},v=13{cos(θ+2kπ)3isin(θ+2kπ)3},k=0,1,2 Foreachvalueofkwewillgetanorderedpair(u,v) eachofwhichcorrespondstoavalueofx, θ=tan1427c2c

Commented byanurup last updated on 17/Feb/23

waiting for your feedback

waitingforyourfeedback

Commented byajfour last updated on 17/Feb/23

thanks, see i have taken another  way...

thanks,seeihavetakenanother way...

Answered by ajfour last updated on 17/Feb/23

Basically  x^3 =x+c  If x=p+q  p^3 +q^3 +3pq(p+q)=p+q+c  If  we take   p^3 +q^3 =c  ⇒    pq=(1/3)   as  p+q=x≠0  let another way  x=((√3)/2)(((cos φ)/(cos θ)))  ⇒  3(√3)cos^3 φ=((√3)cos φ)(2cos θ)^2                                     +8ccos^3 θ  from  4cos^3 φ−3cos φ=cos 3φ  we compare coefficients     ((3(√3))/(4(√3)cos^2 θ))=(4/3)  ⇒  cos^2 θ=(9/(16))  first simply let  cos θ=(3/4)  ⇒  ((3(√3))/4)cos 3φ=8ccos^3 θ  cos 3φ=(4/(3(√3)))(8c)((3/4))^3 =((3(√3)c)/2)  ⇒  3φ=2kπ±cos^(−1) (((3(√3)c)/2))  ⇒  x=p+q=((√3)/2)×(4/3)cos φ  x=(2/( (√3)))cos [((2kπ)/3)±(1/3)cos^(−1) (((3(√3)c)/2))]  k=0,1,2  say one p+q=x is then for k=0     x=p+q=(2/( (√3)))cos ((1/3)cos^(−1) (((3(√3)c)/2)))

Basicallyx3=x+c Ifx=p+q p3+q3+3pq(p+q)=p+q+c Ifwetakep3+q3=c pq=13asp+q=x0 letanotherwayx=32(cosϕcosθ) 33cos3ϕ=(3cosϕ)(2cosθ)2 +8ccos3θ from4cos3ϕ3cosϕ=cos3ϕ wecomparecoefficients 3343cos2θ=43 cos2θ=916 firstsimplyletcosθ=34 334cos3ϕ=8ccos3θ cos3ϕ=433(8c)(34)3=33c2 3ϕ=2kπ±cos1(33c2) x=p+q=32×43cosϕ x=23cos[2kπ3±13cos1(33c2)] k=0,1,2 sayonep+q=xisthenfork=0 x=p+q=23cos(13cos1(33c2))

Commented byanurup last updated on 17/Feb/23

wow! Innovative, but I just want to know what  makes you think to assume x=((√3)/2)(((cos φ)/(cos θ)))

wow!Innovative,butIjustwanttoknowwhat makesyouthinktoassumex=32(cosϕcosθ)

Commented byajfour last updated on 17/Feb/23

i have tried 3500 substitutions!

ihavetried3500substitutions!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com