All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 187478 by normans last updated on 17/Feb/23
letaandbbepositiveintegerssuchthatab+1dividesa2+b2.showthata2+b2ab+1isthesequareofaninteger.
Answered by floor(10²Eta[1]) last updated on 18/Feb/23
leta2+b2ab+1=k∈N⇒a2−kab+b2=k(I)SupposeBWOCthatkisnotaperfectsquare⇒k⩾2AlsosupposeWLOGthata⩾bLet(a,b)beasolutionof(I)withaminimal(bywellorderingprinciple)∙Ifa=b⇒k=2a2a2+1=a2+1+a2−1a2+1⇒a2+1∣a2−1buta2−1<a2+1∴a2−1=0⇒a=1⇒k=1,contradiction.∙Soa>b.Considertheequation:x2−kbx+b2−k=0(★)⇒aissolutionof(★).∃a1solutionof(★)⇒a+a1=kb⇒a1=kb−a∈Z1case:a>kb⇒a⩾kb+1k=b2+a2−kab=b2+a+(a2−kab−a)=b2+a+a(a−kb−1)⩾b2+a⇒k⩾b2+a>a>kb⇒k>kb⇒b<1,contradiction.2case:a=kb⇒a+a1=kb=a⇒a1=0buta1issol.of(★)⇒b2=k∴kisaperfectsquarecontradiction.3case:a<kbk=b2+a2−kab=b2+a(a−kb)<b2Sob2>k.Butby(★):a.a1=b2−k>0⇒a1>0⇒a1∈NBut,0<a1=b2−ka<↓k>1b2−1a<↓a>ba2−1a<a⇒a1<aButby(★),a12−ka1b+b2−k=0⇒(a1,b)issolutionof(I)witha1<a,contradictionbecauseaisminimal.Sokhastobeaperfectsquare.◼
Commented by normans last updated on 19/Feb/23
verynice
Terms of Service
Privacy Policy
Contact: info@tinkutara.com