Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 18749 by Tinkutara last updated on 29/Jul/17

Motion in two dimensions, in a plane  can be studied by expressing position,  velocity and acceleration as vectors in  Cartesian co-ordinates A^→  = A_x i^∧  + A_y j^∧   where i^∧  and j^∧  are unit vector along x  and y directions, respectively and A_x   and A_y  are corresponding components  of A^→  (Figure). Motion can also be  studied by expressing vectors in circular  polar co-ordinates as A^→  = A_r r^∧  + A_θ θ^∧   where r^∧  = (r^→ /r) = cos θ i^∧  + sin θ j^∧  and θ^∧  =  −sin θ i^∧  + cos θ j^∧  are unit vectors along  direction in which ′r′ and ′θ′ are  increasing.  (a) Express i^∧  and j^∧  in terms of r^∧  and θ^∧   (b) Show that both r^∧  and θ^∧  are unit  vectors and are perpendicular to each  other.  (c) Show that (d/dt)(r^∧ ) = ωθ^∧  where  ω = (dθ/dt) and (d/dt)(θ^∧ ) = −ωr^∧   (d) For a particle moving along a spiral  given by r^→  = αθr^∧ , where α = 1 (unit),  find dimensions of ′α′.  (e) Find velocity and acceleration in  polar vector representation for particle  moving along spiral described in (d)  above.

$$\mathrm{Motion}\:\mathrm{in}\:\mathrm{two}\:\mathrm{dimensions},\:\mathrm{in}\:\mathrm{a}\:\mathrm{plane} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{studied}\:\mathrm{by}\:\mathrm{expressing}\:\mathrm{position}, \\ $$$$\mathrm{velocity}\:\mathrm{and}\:\mathrm{acceleration}\:\mathrm{as}\:\mathrm{vectors}\:\mathrm{in} \\ $$$$\mathrm{Cartesian}\:\mathrm{co}-\mathrm{ordinates}\:\overset{\rightarrow} {{A}}\:=\:{A}_{{x}} \overset{\wedge} {{i}}\:+\:{A}_{{y}} \overset{\wedge} {{j}} \\ $$$$\mathrm{where}\:\overset{\wedge} {{i}}\:\mathrm{and}\:\overset{\wedge} {{j}}\:\mathrm{are}\:\mathrm{unit}\:\mathrm{vector}\:\mathrm{along}\:{x} \\ $$$$\mathrm{and}\:{y}\:\mathrm{directions},\:\mathrm{respectively}\:\mathrm{and}\:{A}_{{x}} \\ $$$$\mathrm{and}\:{A}_{{y}} \:\mathrm{are}\:\mathrm{corresponding}\:\mathrm{components} \\ $$$$\mathrm{of}\:\overset{\rightarrow} {{A}}\:\left(\mathrm{Figure}\right).\:\mathrm{Motion}\:\mathrm{can}\:\mathrm{also}\:\mathrm{be} \\ $$$$\mathrm{studied}\:\mathrm{by}\:\mathrm{expressing}\:\mathrm{vectors}\:\mathrm{in}\:\mathrm{circular} \\ $$$$\mathrm{polar}\:\mathrm{co}-\mathrm{ordinates}\:\mathrm{as}\:\overset{\rightarrow} {{A}}\:=\:{A}_{{r}} \overset{\wedge} {{r}}\:+\:{A}_{\theta} \overset{\wedge} {\theta} \\ $$$$\mathrm{where}\:\overset{\wedge} {{r}}\:=\:\frac{\overset{\rightarrow} {{r}}}{{r}}\:=\:\mathrm{cos}\:\theta\:\overset{\wedge} {{i}}\:+\:\mathrm{sin}\:\theta\:\overset{\wedge} {{j}}\:\mathrm{and}\:\overset{\wedge} {\theta}\:= \\ $$$$−\mathrm{sin}\:\theta\:\overset{\wedge} {{i}}\:+\:\mathrm{cos}\:\theta\:\overset{\wedge} {{j}}\:\mathrm{are}\:\mathrm{unit}\:\mathrm{vectors}\:\mathrm{along} \\ $$$$\mathrm{direction}\:\mathrm{in}\:\mathrm{which}\:'{r}'\:\mathrm{and}\:'\theta'\:\mathrm{are} \\ $$$$\mathrm{increasing}. \\ $$$$\left({a}\right)\:\mathrm{Express}\:\overset{\wedge} {{i}}\:\mathrm{and}\:\overset{\wedge} {{j}}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\overset{\wedge} {{r}}\:\mathrm{and}\:\overset{\wedge} {\theta} \\ $$$$\left({b}\right)\:\mathrm{Show}\:\mathrm{that}\:\mathrm{both}\:\overset{\wedge} {{r}}\:\mathrm{and}\:\overset{\wedge} {\theta}\:\mathrm{are}\:\mathrm{unit} \\ $$$$\mathrm{vectors}\:\mathrm{and}\:\mathrm{are}\:\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{each} \\ $$$$\mathrm{other}. \\ $$$$\left({c}\right)\:\mathrm{Show}\:\mathrm{that}\:\frac{{d}}{{dt}}\left(\overset{\wedge} {{r}}\right)\:=\:\omega\overset{\wedge} {\theta}\:\mathrm{where} \\ $$$$\omega\:=\:\frac{{d}\theta}{{dt}}\:\mathrm{and}\:\frac{{d}}{{dt}}\left(\overset{\wedge} {\theta}\right)\:=\:−\omega\overset{\wedge} {{r}} \\ $$$$\left({d}\right)\:\mathrm{For}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{moving}\:\mathrm{along}\:\mathrm{a}\:\mathrm{spiral} \\ $$$$\mathrm{given}\:\mathrm{by}\:\overset{\rightarrow} {{r}}\:=\:\alpha\theta\overset{\wedge} {{r}},\:\mathrm{where}\:\alpha\:=\:\mathrm{1}\:\left(\mathrm{unit}\right), \\ $$$$\mathrm{find}\:\mathrm{dimensions}\:\mathrm{of}\:'\alpha'. \\ $$$$\left({e}\right)\:\mathrm{Find}\:\mathrm{velocity}\:\mathrm{and}\:\mathrm{acceleration}\:\mathrm{in} \\ $$$$\mathrm{polar}\:\mathrm{vector}\:\mathrm{representation}\:\mathrm{for}\:\mathrm{particle} \\ $$$$\mathrm{moving}\:\mathrm{along}\:\mathrm{spiral}\:\mathrm{described}\:\mathrm{in}\:\left({d}\right) \\ $$$$\mathrm{above}. \\ $$

Commented by Tinkutara last updated on 29/Jul/17

Answered by ajfour last updated on 29/Jul/17

(a)Let     i^� =λr^� +μθ^�     i^� =λ(cos θi^� +sin θj^� )+μ(−sin θi^� +cos θj^� )  ⇒     [ λcos θ−μsin θ=1  ]×cos θ  and  [ λsin θ+μcos θ=0  ]×sin θ  Adding, we obtain      λ=cos θ  ;  μ=−sin θ  So,   i^� =(cos θ)r^� −(sin θ)θ^�       Let     j^� =ρr^� +εθ^�   or j^� =ρ(cos θi^� +sin θj^� )+ε(−sin θi^� +cos θj^� )  ⇒  [ ρcos θ−εsin θ=0 ]×cos θ , and         [ ρsin θ+εcos θ=1 ]×sin θ  Adding we get,          ρ=sin θ ;  ε=cos θ  Hence  j^� =(sin θ)r^� +(cos θ)θ^�   ...    ....    ....   ...   ...   ...   ....   ....  (b) ∣r^� ∣=(√(cos^2 θ+sin^2 θ)) =1              hence a unit vector          ∣θ^� ∣=(√((−sin θ)^2 +(cos θ)^2 )) =1              a unit vector.   r^� .θ^� =(cos θi^� +sin θj^� ).(−sin θi^� +cos θj^� )         =−cos θsin θ+sin θcos θ =0   ⇒    r^�  and θ^�  are ⊥ to each other.  ....   ....    ....   .....    ....    .....    ....   (c) (dr^� /dt)=(d/dt)(cos θi^� +sin θj^� )               =(dθ/dt)(−sin θi^� +cos θj^� )       ⇒   (dr^� /dt)=ωθ^�  .          (dθ^� /dt)=(d/dt)(−sin θi^� +cos θj^� )               =(dθ/dt)(−cos θi^� −sin θj^� )       ⇒  (dθ^� /dt)=−ωr^�  .      ....   .....   ....    ....    .....   ....   ....  (d)  r^→ =αθr^�   θ is dimensionless, so is unit   vector r^�  ; so  [α]=[∣r^� ∣] =M^0 L^1 T^0  .  ....   ....    ....    ....    .....    .....   ....  (e) v^→ =(dr^→ /dt)=α(d/dt)(θr^� )            =α((dθ/dt)r^� +θ(dr^� /dt))            =αω(r^� +θθ^� ) .     a^→ =(dv^→ /dt)=α(d/dt)(ωr^� +ωθθ^� )  =α((dω/dt)r^� +ω(dr^� /dt))+α(θ(dω/dt)θ^� +ω(dθ/dt)θ^� +ωθ(dθ^� /dt))  =α((dω/dt)r^� +ω(ωθ^� ))+α[θ(dω/dt)θ^� +ω(dθ/dt)θ^� +ωθ(−ωr^� )]  a^→ =α{((dω/dt)−ω^2 θ)r^� +(2ω^2 +θ(dω/dt))θ^� } .

$$\left(\mathrm{a}\right)\mathrm{Let}\:\:\:\:\:\hat {\mathrm{i}}=\lambda\hat {\mathrm{r}}+\mu\hat {\theta} \\ $$$$\:\:\hat {\mathrm{i}}=\lambda\left(\mathrm{cos}\:\theta\hat {\mathrm{i}}+\mathrm{sin}\:\theta\hat {\mathrm{j}}\right)+\mu\left(−\mathrm{sin}\:\theta\hat {\mathrm{i}}+\mathrm{cos}\:\theta\hat {\mathrm{j}}\right) \\ $$$$\Rightarrow\:\:\:\:\:\left[\:\lambda\mathrm{cos}\:\theta−\mu\mathrm{sin}\:\theta=\mathrm{1}\:\:\right]×\mathrm{cos}\:\theta \\ $$$$\mathrm{and}\:\:\left[\:\lambda\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta=\mathrm{0}\:\:\right]×\mathrm{sin}\:\theta \\ $$$$\mathrm{Adding},\:\mathrm{we}\:\mathrm{obtain} \\ $$$$\:\:\:\:\lambda=\mathrm{cos}\:\theta\:\:;\:\:\mu=−\mathrm{sin}\:\theta \\ $$$$\mathrm{So},\:\:\:\hat {\mathrm{i}}=\left(\mathrm{cos}\:\theta\right)\hat {\mathrm{r}}−\left(\mathrm{sin}\:\theta\right)\hat {\theta} \\ $$$$\:\:\:\:\mathrm{Let}\:\:\:\:\:\hat {\mathrm{j}}=\rho\hat {\mathrm{r}}+\epsilon\hat {\theta} \\ $$$$\mathrm{or}\:\hat {\mathrm{j}}=\rho\left(\mathrm{cos}\:\theta\hat {\mathrm{i}}+\mathrm{sin}\:\theta\hat {\mathrm{j}}\right)+\epsilon\left(−\mathrm{sin}\:\theta\hat {\mathrm{i}}+\mathrm{cos}\:\theta\hat {\mathrm{j}}\right) \\ $$$$\Rightarrow\:\:\left[\:\rho\mathrm{cos}\:\theta−\epsilon\mathrm{sin}\:\theta=\mathrm{0}\:\right]×\mathrm{cos}\:\theta\:,\:\mathrm{and} \\ $$$$\:\:\:\:\:\:\:\left[\:\rho\mathrm{sin}\:\theta+\epsilon\mathrm{cos}\:\theta=\mathrm{1}\:\right]×\mathrm{sin}\:\theta \\ $$$$\mathrm{Adding}\:\mathrm{we}\:\mathrm{get}, \\ $$$$\:\:\:\:\:\:\:\:\rho=\mathrm{sin}\:\theta\:;\:\:\epsilon=\mathrm{cos}\:\theta \\ $$$$\mathrm{Hence}\:\:\hat {\mathrm{j}}=\left(\mathrm{sin}\:\theta\right)\hat {\mathrm{r}}+\left(\mathrm{cos}\:\theta\right)\hat {\theta} \\ $$$$...\:\:\:\:....\:\:\:\:....\:\:\:...\:\:\:...\:\:\:...\:\:\:....\:\:\:.... \\ $$$$\left(\mathrm{b}\right)\:\mid\hat {\mathrm{r}}\mid=\sqrt{\mathrm{cos}\:^{\mathrm{2}} \theta+\mathrm{sin}\:^{\mathrm{2}} \theta}\:=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{hence}\:\mathrm{a}\:\mathrm{unit}\:\mathrm{vector} \\ $$$$\:\:\:\:\:\:\:\:\mid\hat {\theta}\mid=\sqrt{\left(−\mathrm{sin}\:\theta\right)^{\mathrm{2}} +\left(\mathrm{cos}\:\theta\right)^{\mathrm{2}} }\:=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{a}\:\mathrm{unit}\:\mathrm{vector}. \\ $$$$\:\hat {\mathrm{r}}.\hat {\theta}=\left(\mathrm{cos}\:\theta\hat {\mathrm{i}}+\mathrm{sin}\:\theta\hat {\mathrm{j}}\right).\left(−\mathrm{sin}\:\theta\hat {\mathrm{i}}+\mathrm{cos}\:\theta\hat {\mathrm{j}}\right) \\ $$$$\:\:\:\:\:\:\:=−\mathrm{cos}\:\theta\mathrm{sin}\:\theta+\mathrm{sin}\:\theta\mathrm{cos}\:\theta\:=\mathrm{0} \\ $$$$\:\Rightarrow\:\:\:\:\hat {\mathrm{r}}\:\mathrm{and}\:\hat {\theta}\:\mathrm{are}\:\bot\:\mathrm{to}\:\mathrm{each}\:\mathrm{other}. \\ $$$$....\:\:\:....\:\:\:\:....\:\:\:.....\:\:\:\:....\:\:\:\:.....\:\:\:\:.... \\ $$$$\:\left(\mathrm{c}\right)\:\frac{\mathrm{d}\hat {\mathrm{r}}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{cos}\:\theta\hat {\mathrm{i}}+\mathrm{sin}\:\theta\hat {\mathrm{j}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{d}\theta}{\mathrm{dt}}\left(−\mathrm{sin}\:\theta\hat {\mathrm{i}}+\mathrm{cos}\:\theta\hat {\mathrm{j}}\right) \\ $$$$\:\:\:\:\:\Rightarrow\:\:\:\frac{\mathrm{d}\hat {\mathrm{r}}}{\mathrm{dt}}=\omega\hat {\theta}\:. \\ $$$$\:\:\:\:\:\:\:\:\frac{\mathrm{d}\hat {\theta}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(−\mathrm{sin}\:\theta\hat {\mathrm{i}}+\mathrm{cos}\:\theta\hat {\mathrm{j}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{d}\theta}{\mathrm{dt}}\left(−\mathrm{cos}\:\theta\hat {\mathrm{i}}−\mathrm{sin}\:\theta\hat {\mathrm{j}}\right) \\ $$$$\:\:\:\:\:\Rightarrow\:\:\frac{\mathrm{d}\hat {\theta}}{\mathrm{dt}}=−\omega\hat {\mathrm{r}}\:.\:\:\:\: \\ $$$$....\:\:\:.....\:\:\:....\:\:\:\:....\:\:\:\:.....\:\:\:....\:\:\:.... \\ $$$$\left(\mathrm{d}\right)\:\:\overset{\rightarrow} {\mathrm{r}}=\alpha\theta\hat {\mathrm{r}} \\ $$$$\theta\:\mathrm{is}\:\mathrm{dimensionless},\:\mathrm{so}\:\mathrm{is}\:\mathrm{unit}\: \\ $$$$\mathrm{vector}\:\hat {\mathrm{r}}\:;\:\mathrm{so}\:\:\left[\alpha\right]=\left[\mid\hat {\mathrm{r}}\mid\right]\:=\mathrm{M}^{\mathrm{0}} \mathrm{L}^{\mathrm{1}} \mathrm{T}^{\mathrm{0}} \:. \\ $$$$....\:\:\:....\:\:\:\:....\:\:\:\:....\:\:\:\:.....\:\:\:\:.....\:\:\:.... \\ $$$$\left(\mathrm{e}\right)\:\overset{\rightarrow} {\mathrm{v}}=\frac{\mathrm{d}\overset{\rightarrow} {\mathrm{r}}}{\mathrm{dt}}=\alpha\frac{\mathrm{d}}{\mathrm{dt}}\left(\theta\hat {\mathrm{r}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\alpha\left(\frac{\mathrm{d}\theta}{\mathrm{dt}}\hat {\mathrm{r}}+\theta\frac{\mathrm{d}\hat {\mathrm{r}}}{\mathrm{dt}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\alpha\omega\left(\hat {\mathrm{r}}+\theta\hat {\theta}\right)\:. \\ $$$$\:\:\:\overset{\rightarrow} {\mathrm{a}}=\frac{\mathrm{d}\overset{\rightarrow} {\mathrm{v}}}{\mathrm{dt}}=\alpha\frac{\mathrm{d}}{\mathrm{dt}}\left(\omega\hat {\mathrm{r}}+\omega\theta\hat {\theta}\right) \\ $$$$=\alpha\left(\frac{\mathrm{d}\omega}{\mathrm{dt}}\hat {\mathrm{r}}+\omega\frac{\mathrm{d}\hat {\mathrm{r}}}{\mathrm{dt}}\right)+\alpha\left(\theta\frac{\mathrm{d}\omega}{\mathrm{dt}}\hat {\theta}+\omega\frac{\mathrm{d}\theta}{\mathrm{dt}}\hat {\theta}+\omega\theta\frac{\mathrm{d}\hat {\theta}}{\mathrm{dt}}\right) \\ $$$$=\alpha\left(\frac{\mathrm{d}\omega}{\mathrm{dt}}\hat {\mathrm{r}}+\omega\left(\omega\hat {\theta}\right)\right)+\alpha\left[\theta\frac{\mathrm{d}\omega}{\mathrm{dt}}\hat {\theta}+\omega\frac{\mathrm{d}\theta}{\mathrm{dt}}\hat {\theta}+\omega\theta\left(−\omega\hat {\mathrm{r}}\right)\right] \\ $$$$\overset{\rightarrow} {\mathrm{a}}=\alpha\left\{\left(\frac{\mathrm{d}\omega}{\mathrm{dt}}−\omega^{\mathrm{2}} \theta\right)\hat {\mathrm{r}}+\left(\mathrm{2}\omega^{\mathrm{2}} +\theta\frac{\mathrm{d}\omega}{\mathrm{dt}}\right)\hat {\theta}\right\}\:. \\ $$$$ \\ $$

Commented by Tinkutara last updated on 29/Jul/17

Thank you very much ajfour Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{ajfour}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com