Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 187496 by mathlove last updated on 18/Feb/23

Commented by mr W last updated on 18/Feb/23

things like ∣(A^→ /B^→ )∣ don′t exist!   if you mean ((∣A^→ ∣)/(∣B^→ ∣)), then you should  also write that what you mean.

thingslikeABdontexist!ifyoumeanAB,thenyoushouldalsowritethatwhatyoumean.

Answered by manxsol last updated on 18/Feb/23

((∣p−q∣^2 )/(∣p+q∣^2 ))=((∣p∣^2 −2p•q+∣q∣^2 )/(∣p∣^2 +2p•q+∣q∣^2 ))  =((2−2cosθ)/(2+2cosθ))       p•q=(1)(1)cosθ  ∣((p−q)/(p+q))∣^2 =((1−cosθ)/(1+cosθ))=((1−cos(θ/2))/(1+cos(θ/2)))  =((1−(1−2sin^2 (θ/2)))/(1+(2cos^2 (θ/2)−1)))=((2sin^2 (θ/2))/(2cos^2 (θ/2)))  ∣((p−q)/(p+q))∣=tan(θ/2)

pq2p+q2=p22pq+q2p2+2pq+q2=22cosθ2+2cosθpq=(1)(1)cosθpqp+q2=1cosθ1+cosθ=1cosθ21+cosθ2=1(12sin2θ2)1+(2cos2θ21)=2sin2θ22cos2θ2pqp+q∣=tanθ2

Commented by manxsol last updated on 18/Feb/23

true,no existe division   de vectores

true,noexistedivisiondevectores

Commented by mr W last updated on 18/Feb/23

¡De nada!

¡Denada!

Commented by manxsol last updated on 18/Feb/23

exercise debe ser asi  to prove   ((∣p^(→) −q^(→) ∣^2 )/(∣p^(→) +q^→ ∣^2 ))=tg(θ/2)  p and q vectors unitary    gracias por la atencion    Sir W

exercisedebeserasitoprovepq2p+q2=tgθ2pandqvectorsunitarygraciasporlaatencionSirW

Commented by mr W last updated on 18/Feb/23

what is ∣((p−q)/(p+q))∣?

whatispqp+q?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com