Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 187546 by yaslm last updated on 18/Feb/23

Answered by ARUNG_Brandon_MBU last updated on 18/Feb/23

S=((1×2)/3)+((2×3)/3^2 )+((3×4)/3^3 )+((4×5)/3^4 )+∙∙∙  (i)  3S=1×2+((2×3)/3)+((3×4)/3^2 )+((4×5)/3^3 )+∙∙∙  (ii)  (ii)−(i)  2S=2+((2×2)/3)+((2×3)/3^2 )+((2×4)/3^3 )+((2×5)/3^4 )+∙∙∙ (iii)  6S=2×3+2×2+((2×3)/3)+((2×4)/3^2 )+((2×5)/3^3 )+∙∙∙ (iv)  (iv)−(iii)  4S=8+(2/3)+(2/3^2 )+(2/3^3 )+(2/3^4 )+∙∙∙  (v)  12S=24+2+(2/3)+(2/3^2 )+(2/3^3 )+(2/3^4 )+∙∙∙  (vi)  12S−4S=18 ⇒8S=18 ⇒S=(9/4)

S=1×23+2×332+3×433+4×534+(i)3S=1×2+2×33+3×432+4×533+(ii)(ii)(i)2S=2+2×23+2×332+2×433+2×534+(iii)6S=2×3+2×2+2×33+2×432+2×533+(iv)(iv)(iii)4S=8+23+232+233+234+(v)12S=24+2+23+232+233+234+(vi)12S4S=188S=18S=94

Answered by JDamian last updated on 18/Feb/23

S = Σ_(k=1) ^(∞) ((k(k+1))/3^k )  f ≡ f(x) = 1+x+x^2 +x^3 + ∙∙∙ = (1/(1−x))   ∀∣x∣<1  D ≡ (d/dx)  Df = 1+2x+3x^2 + ∙∙∙ = (1/((1−x)^2 ))   ∀∣x∣<1  x^2 Df = 1∙x^2 +2x^3 + ∙∙∙ = (x^2 /((1−x)^2 ))   ∀∣x∣<1  g(x)≡D{x^2 Df} = 1∙2x+2∙3x^2 +3∙4x^3 +∙∙∙=           = ((2x)/((1−x)^3 ))          ∀∣x∣<1    S=g(x)∣_(x=(1/3)) =g((1/3))=  =((2×(1/3))/((1−(1/3))^3 ))=(2/(3×((2/3))^3 ))=(2/(3×((2×2^2 )/(3×3^2 )) ))=(9/4)■

S=Σk=1k(k+1)3kff(x)=1+x+x2+x3+=11xx∣<1DddxDf=1+2x+3x2+=1(1x)2x∣<1x2Df=1x2+2x3+=x2(1x)2x∣<1g(x)D{x2Df}=12x+23x2+34x3+==2x(1x)3x∣<1S=g(x)x=13=g(13)==2×13(113)3=23×(23)3=23×2×223×32=94

Terms of Service

Privacy Policy

Contact: info@tinkutara.com