Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 187548 by Rupesh123 last updated on 18/Feb/23

Answered by ARUNG_Brandon_MBU last updated on 18/Feb/23

z^9 +z^6 +z^3 =−1 ⇒z^9 +z^6 +z^3 +1=0  ⇒((z^(12) −1)/(z^3 −1))=0, z^3  ≠1⇒z≠1, z≠−(1/2)±((√3)/2)i   ⇒ z^(12) =1=e^(2kπi)   ⇒z=e^((k/6)πi) , k∈[0, 11]  ⇒z_0 =1(rejected), z_1 =((√3)/2)+(1/2)i, z_2 =(1/2)+((√3)/2)i  z_3 =i, z_4 =−(1/2)+((√3)/2)i(rejected), z_5 =−((√3)/2)+(1/2)i  z_6 =−1(rejected from hypothesis), z_7 =−((√3)/2)−(1/2)i  z_8 =−(1/2)−((√3)/2)i(rejected), z_9 =−i, z_(10) =(1/2)−((√3)/2)i  z_(11) =((√3)/2)−(1/2)i

z9+z6+z3=1z9+z6+z3+1=0z121z31=0,z31z1,z12±32iz12=1=e2kπiz=ek6πi,k[0,11]z0=1(rejected),z1=32+12i,z2=12+32iz3=i,z4=12+32i(rejected),z5=32+12iz6=1(rejectedfromhypothesis),z7=3212iz8=1232i(rejected),z9=i,z10=1232iz11=3212i

Commented by Rupesh123 last updated on 18/Feb/23

Good job, bro!

Answered by Ar Brandon last updated on 18/Feb/23

z^9 +z^6 +z^3 =−1⇒z^9 +z^6 +z^3 +1=0  ⇒z^6 (z^3 +1)+(z^3 +1)=0  ⇒(z^3 +1)(z^6 +1)=0  ⇒z^3 +1=0 ∨ z^6 +1=0  ⇒z^3 =−1=e^((2m+1)πi)  ∨ z^6 =−1=e^((2n+1)πi)   ⇒z=e^((((2m+1)/3))πi) , m∈[0, 2] ∨ z=e^((((2n+1)/6))πi) , n∈[0, 5]  ⇒z={(1/2)+((√3)/2)i; −1; (1/2)−((√3)/2)i}  ∨ z={((√3)/2)+(1/2)i; i; −((√3)/2)+(1/2)i; −((√3)/2)−(1/2)i; −i; ((√3)/2)−(1/2)i}

z9+z6+z3=1z9+z6+z3+1=0z6(z3+1)+(z3+1)=0(z3+1)(z6+1)=0z3+1=0z6+1=0z3=1=e(2m+1)πiz6=1=e(2n+1)πiz=e(2m+13)πi,m[0,2]z=e(2n+16)πi,n[0,5]z={12+32i;1;1232i}z={32+12i;i;32+12i;3212i;i;3212i}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com