All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 18798 by chernoaguero@gmail.com last updated on 29/Jul/17
Answered by behi.8.3.4.1.7@gmail.com last updated on 30/Jul/17
x+ax+b=t,x−ax−b=s⇒x2−a2x2−b2=ts,a2+b2ab=m⇒t2+s2−mts=0⇒t=ms±m2s2−4s22=⇒t=s2(m±m2−4)m2−4=(a2+b2)2a2b2−4=(a2+b2)2−4a2b2a2b2==(a2−b2)2a2b2⇒m±m2−4=a2+b2ab±a2−b2ab=2ab,2ba⇒ts=ab,ba1)ts=ab⇒x+ax+bx−ax−b=ab⇒⇒b(x2+(a−b)x−ab)=a(x2−(a−b)x−ab)⇒(b−a)x2+(a+b)(a−b)x−ab(a−b)=0if:b≠a⇒x2−(a+b)x+ab=0⇒x=(a+b)±(a+b)2−4ab2=(a+b)±(a−b)2=a,b2)ts=ba⇒x+ax+bx−ax−b=ba⇒⇒a(x2+(a−b)x−ab)=b(x2−(a−b)x−ab)⇒(a−b)x2+(a−b)(a+b)x−ab(a−b)=0⇒if:a≠b⇒x2+(a+b)x−ab=0x=−(a+b)±(a+b)2+4ab2.if:a=b⇒t=s⇒x+ax+a=x−ax−a.true:∀x.
Commented by chernoaguero@gmail.com last updated on 30/Jul/17
thankssirireallyappreciateit
Terms of Service
Privacy Policy
Contact: info@tinkutara.com