All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 188224 by Shrinava last updated on 26/Feb/23
IfΩ=∑∞n=1(∏∞k=2k3−1k3+1)nSolveforcomplexnumbees:z4+3z3+Ωz2+3z+1=0
Answered by aleks041103 last updated on 27/Feb/23
k3−1k3+1=(k−1)(k2+k+1)(k+1)(k2−k+1)∏mk=2k3−1k3+1=∏mk=2k−1k+1∏mk=2k2+k+1k2−k+1∏mk=2k2+k+1k2−k+1=∏mk=2k2+k+1∏mk=2k2−k+1==∏mk=2k2+k+1∏mk=2(k−1)2+(k−1)+1==∏mk=2k2+k+1∏m−1k=1k2+k+1=m2+m+13∏mk=2k−1k+1=∏mk=2k−1k∏mk=2kk+1==1m2m+1=2m(m+1)∏mk=2k3−1k3+1=2(m2+m+1)3m(m+1)⇒∏∞k=2k3−1k3+1=limm→∞2(m2+m+1)3m(m+1)=23⇒Ω=∑∞n=1(23)n=23∑∞n=0(23)n==2311−23=2z4+3z3+Ωz2+3z+1=0z4+3z3+2z2+3z+1=0z=0⇒notsol.z2+3z+2+31z+1z2=0w=z+1z⇒w2=2+z2+1z2⇒z2+1z2=w2−2w2−2+3w+2=0⇒w2+3w=0⇒w=0;−3⇒z+1z=0⇒z2+1=0⇒z1,2=±iz+1z=−3⇒z2+3z+1=0⇒z3,4=−3±52⇒z∈{i,−i,5−32,−3+52};Ω=2
Commented by Shrinava last updated on 28/Feb/23
perfectdearprofessorthankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com