Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 188267 by normans last updated on 27/Feb/23

Answered by mr W last updated on 02/Mar/23

Commented by mr W last updated on 02/Mar/23

xy=128  ((16a−x)/2)=3a ⇒x=10a  (x/y)=(c/a)  yc=ax=10a^2   (12c−(y/2))^2 +(8a)^2 =((x/2))^2 +((y/2))^2   144c^2 −12×10a^2 +39a^2 =0  ⇒c=((3a)/4)  ⇒(x/y)=(3/4)  ⇒xy=((3y^2 )/4)=128 ⇒y=((16(√6))/3) ⇒x=4(√6)  ⇒a=((4(√6))/(10))=((2(√6))/5) ⇒c=((3(√6))/(10))  A_(triangle) =(((25a)(25c))/2)=((25^2 ac)/2)       =((25^2 )/2)×((2(√6))/5)×((3(√6))/(10))       =25×9=225

xy=12816ax2=3ax=10axy=cayc=ax=10a2(12cy2)2+(8a)2=(x2)2+(y2)2144c212×10a2+39a2=0c=3a4xy=34xy=3y24=128y=1663x=46a=4610=265c=3610Atriangle=(25a)(25c)2=252ac2=2522×265×3610=25×9=225

Answered by a.lgnaoui last updated on 01/Mar/23

posons    posons DM=y   HI=x  Area(DEMN)=xy=128  x=((128)/y)  Area of teiangle(ADM)=((MD×AL)/2)  =Area(ALD)+(ALM)  △LCD  cos α=((25a)/(25b))=(a/b)⇒  sin α=((√(b^2 −a^2 ))/b)  DL=12(√(b^2 −a^2 ))  CL=12bcos α=12a  ⇒AL=25a−12a          AL=13a  △ADM    ∡AOM=2∡ADM =2ϕ     AD^2 =AL^2 +DL^2 =(13a)^2 +12^2 (b^2 −a^2 )  AD=(√(12^2 b^2 +25a^2 ))  cos   ϕ=((DL)/(AD))=((12(√(b^2 −a^2 )))/( (√(DL^2 +AL^2 ))))=      cos ϕ=((12(√(b^2 −a^2 )))/( (√(12^2 b^2 +25a^2 ))))  AM^2 =DM^2 +AD^2 −2AD×DMcos ϕ (1)  △AMD (KM=((AM)/2);∡MDK=(ϕ/2))    sin (ϕ/2)= ((MK)/(MD))=((AM)/(2MD))   AM=2MDsin (ϕ/2)(2)  (1)⇒ 4MD^2 sin^2 (ϕ/2)=  DM^2 +AD^2 −2AD×DMcos ϕ  DM^2 (1−4sin^2 (ϕ/2))−2AD×DMcos ϕ+AD^2 =0  y^2 −((24(√(b^2 −a^2 )))/( (24(√(b^2 −a^2 )) −3(√(12^2 b^2 +25a^2 )))))y+  +(((12^2 b^2 +25a^2 )(√(12^2 b^2 +25a^2 )))/(24(√(b^2 −a^2  )) −3(√(12^2 b^2 +25a^2 ))))  (y−((4(√(b^2 −a^2 )))/(8(√(b^2 −a^2 )) −(√(12^2 b^2 +25a^2 )))))^2 +  ((√((12^2 b^2 +25a^2 )^3  ))/(24(√(b^2 −a^2  )) −3(√(12^2 b^2 +25a^2 ))))     −  ((16(b^2 −a^2 ))/((24(√(b^2 −a^2  )) −(√(12^2 b^2 +25a^2 )) )^2 ))    y=((4(√(b^2 −a^2 )))/(8(√(b^2 −a^2 )) −(√(12^2 b^2 +25a^2 ))))±  ((√(16(b^2 −a^2 ) −(√((12b^2 +25a^2 )^3 ))[(24(√(b^2 −a^2 )) −3(√(12b^2 +25a^2  )))))/((24(√(b^2 −a^2  ))− (√(12b^2 +25a^2 )))))                 [Area=((13a)/2)y]      (3)   Methode  geometrique:  △DEP    tan α= ((EP)/(DE))=((BI)/(DI))=((AB)/(AC))  ((EP)/x)=((√(b^2 −a^2 ))/a)          (1)  ((HP)/(CH))=((AB)/(AC))  ⇒(((12(√(b^2 −a^2 )) )+FP)/(x+12a))(2)    FP=((x(√(b^2 −a^2 )))/a)  ((FP+12(√(b^2 −a^2 )))/(x+12a))   =((√(b^2 −a^2 ))/a)    ((((x(√(b^2 −a^2 )))/a)+12(√(b^2 −a^2 )))/(x+12a))=((√(b^2 −a^2 ))/a)  ((x(√(b^2 −a^2 )) +12a(√(b^2 −a^2 )))/(x+12a)) =((√(b^2 −a^2 ))/a)  ax(√(b^2 −a^2  )) +12a^2 (√(b^2 −a^2  )) =  x(√(b^2 −a^2  )) +12a(√(b^2 −a^2  ))      x(a(√(b^2 −a^2 )) −(√(b^2 −a^2 )) )=  12a((√(b^2 −a^2  )) −a(√(b^2 −a^2  ))       x((√(b^2 −a^2 )) )(a−1)=       12a(√(b^2 −a^2 )) (1−a)        x=12a       xy=128                    y=((32)/(3a))=    (3) Area(triangle)=((13a)/2)y        Area=69,33

posonsposonsDM=yHI=xArea(DEMN)=xy=128x=128yAreaofteiangle(ADM)=MD×AL2=Area(ALD)+(ALM)LCDcosα=25a25b=absinα=b2a2bDL=12b2a2CL=12bcosα=12aAL=25a12aAL=13aADMAOM=2ADM=2φAD2=AL2+DL2=(13a)2+122(b2a2)AD=122b2+25a2cosφ=DLAD=12b2a2DL2+AL2=cosφ=12b2a2122b2+25a2AM2=DM2+AD22AD×DMcosφ(1)AMD(KM=AM2;MDK=φ2)sinφ2=MKMD=AM2MDAM=2MDsinφ2(2)(1)4MD2sin2φ2=DM2+AD22AD×DMcosφDM2(14sin2φ2)2AD×DMcosφ+AD2=0y224b2a2(24b2a23122b2+25a2)y++(122b2+25a2)122b2+25a224b2a23122b2+25a2(y4b2a28b2a2122b2+25a2)2+(122b2+25a2)324b2a23122b2+25a216(b2a2)(24b2a2122b2+25a2)2y=4b2a28b2a2122b2+25a2±16(b2a2)(12b2+25a2)3[(24b2a2312b2+25a2)(24b2a212b2+25a2)[Area=13a2y](3)Methodegeometrique:DEPtanα=EPDE=BIDI=ABACEPx=b2a2a(1)HPCH=ABAC(12b2a2)+FPx+12a(2)FP=xb2a2aFP+12b2a2x+12a=b2a2axb2a2a+12b2a2x+12a=b2a2axb2a2+12ab2a2x+12a=b2a2aaxb2a2+12a2b2a2=xb2a2+12ab2a2x(ab2a2b2a2)=12a(b2a2ab2a2x(b2a2)(a1)=12ab2a2(1a)x=12axy=128y=323a=(3)Area(triangle)=13a2yArea=69,33

Commented by a.lgnaoui last updated on 01/Mar/23

Commented by mr W last updated on 02/Mar/23

clearly wrong! the triangle looks  almost double so large as the  rectangle, but your answer says the  triangle is only half so large as the   rectangle!  you seem to have no sense of geometric  size.

clearlywrong!thetrianglelooksalmostdoublesolargeastherectangle,butyouranswersaysthetriangleisonlyhalfsolargeastherectangle!youseemtohavenosenseofgeometricsize.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com