Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 188645 by Rupesh123 last updated on 04/Mar/23

Answered by witcher3 last updated on 05/Mar/23

let a=cos((π/7)),b=−cos(((2π)/7));c=cos(((3π)/7))  we want 1+a^3 +b^3 +c^3 +a^3 b^3 +a^3 c^3 +b^3 c^3 +a^3 b^3 c^3 =S  Starte withe  eq∵cos(3x)=−cos(4x)⇒cos(3x)=cos(π−4x)  ⇔3x=π−4x+2kπ∨3x=4x−π+2kπ  ⇔x_k =(π/7)(1+2k),k∈[0,6]  cos(3x)=4cos^3 (x)−3cos(x)  cos(4x)=2(2cos^2 (x)−1)^2 −1=8cos^4 (x)−8cos^2 (x)+1  ⇔−8cos^4 (x)−4cos^3 (x)+8cos^2 (x)+3cos(x)−1=0  cos(x_k ) root of  cos((π/7)),cos(((3π)/7)),cos(((5π)/7))=−cos(((2π)/7)),cosπ=−1  cos(((9π)/7))=−cos(((2π)/7)),cos((11π)/7)=cos(((3π)/7));cos(((13π)/7))=cos((π/7))  ⇔{−1,cos(π/7),−cos(((2π)/7)),cos(((3π)/7))}root of  −8X^4 −4X^3 +8x^2 +3x−1=0..(−1)root  ⇔8x^4 −4x^3 +8x^2 +3x−1=(x+1)(−8x^3 +4x^2 +4x−1)  ⇔{cos(π/7),−cos(((2π)/7)),cos(((3π)/7))}root of  x^3 −(x^2 /2)+(x/2)+(1/8)  a+b+c=(1/2),ab+bc+ac=−(1/2),abc=−(1/8)  p_3 =a^3 +b^3 +c^3 ..Newtoon identie   p_2 =e_1 p_1 −2e_2 =(1/4)+1=(5/4)  p_3 =p_2 e_1 −e_2 p_1 +3e_3 =(5/8)+(1/4)−(3/8)=(1/2)  ab+ac+bc=−(1/2)  ab.ac+acbc+ab.bc=abc(a+b+c)=−(1/(16))  (abc)^2 =(1/(64))  p_2 =(1/4)+(1/8)=(3/8)  p_3 ′=(3/8).−(1/2)−(1/(16)).(1/2)+(3/(64))=−((11)/(64))  P_3 ′′=(abc)^3 =−(1/(512))  S=1+p_3 +p_3 ′+p′′_3 =1+(1/2)−((11)/(64))−(1/(512))  =((85)/(64))−(1/(512))=((679)/(512))  ⇔Π_(k=0) ^2 (1+cos^3 (((2k+1)/7)π))=((679)/(512))

leta=cos(π7),b=cos(2π7);c=cos(3π7)wewant1+a3+b3+c3+a3b3+a3c3+b3c3+a3b3c3=SStartewitheeqcos(3x)=cos(4x)cos(3x)=cos(π4x)3x=π4x+2kπ3x=4xπ+2kπxk=π7(1+2k),k[0,6]cos(3x)=4cos3(x)3cos(x)cos(4x)=2(2cos2(x)1)21=8cos4(x)8cos2(x)+18cos4(x)4cos3(x)+8cos2(x)+3cos(x)1=0cos(xk)rootofcos(π7),cos(3π7),cos(5π7)=cos(2π7),cosπ=1cos(9π7)=cos(2π7),cos11π7=cos(3π7);cos(13π7)=cos(π7){1,cosπ7,cos(2π7),cos(3π7)}rootof8X44X3+8x2+3x1=0..(1)root8x44x3+8x2+3x1=(x+1)(8x3+4x2+4x1){cosπ7,cos(2π7),cos(3π7)}rootofx3x22+x2+18a+b+c=12,ab+bc+ac=12,abc=18p3=a3+b3+c3..Newtoonidentiep2=e1p12e2=14+1=54p3=p2e1e2p1+3e3=58+1438=12ab+ac+bc=12ab.ac+acbc+ab.bc=abc(a+b+c)=116(abc)2=164p2=14+18=38p3=38.12116.12+364=1164P3=(abc)3=1512S=1+p3+p3+p3=1+1211641512=85641512=6795122k=0(1+cos3(2k+17π))=679512

Commented by Rupesh123 last updated on 06/Mar/23

Good job, sir!

Commented by witcher3 last updated on 06/Mar/23

thank You Sir  god bless You

thankYouSirgodblessYou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com