Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 188845 by ajfour last updated on 07/Mar/23

Answered by a.lgnaoui last updated on 07/Mar/23

△OAB   (recrangle en O)  AB=a+((a(√2))/2)    ⇒AH=(a/2)+((a(√2))/4)  OA=OB =R  sin (π/4)=((AH)/R)⇒R=((2AH)/( (√2)))             R=1+(√2)

OAB(recrangleenO)AB=a+a22AH=a2+a24OA=OB=Rsinπ4=AHRR=2AH2R=1+2

Commented by a.lgnaoui last updated on 07/Mar/23

Commented by mr W last updated on 08/Mar/23

clearly wrong!  a ball within the cube can not be larger  than the cube itself!

clearlywrong!aballwithinthecubecannotbelargerthanthecubeitself!

Answered by mr W last updated on 08/Mar/23

Commented by mr W last updated on 08/Mar/23

A(r,r,r)  P(1,0,0)  PQ^(→) =(−1,1,1)  PA^(→) =(r−1,r,r)  (r−1,r,r)×(−1,1,1)=(0,2r−1,2r−1)  r=((√(2(2r−1)^2 ))/( (√3)))=distance from A to PQ  5r^2 −8r+2=0  ⇒r=((4−(√6))/5)≈0.3101 < 0.5 (within cube)

A(r,r,r)P(1,0,0)PQ=(1,1,1)PA=(r1,r,r)(r1,r,r)×(1,1,1)=(0,2r1,2r1)r=2(2r1)23=distancefromAtoPQ5r28r+2=0r=4650.3101<0.5(withincube)

Commented by ajfour last updated on 08/Mar/23

(r−1,r,r)×(−1,1,1)=(0,2r−1,2r−1)  i dint understand above..but  PA.λ^� =(√(PA^2 −r^2 ))   (1−r+r+r)^2 =3{(r−1)^2 +2r^2 −r^2 }  (1+r)^2 =3r^2 +3(1−r)^2   ⇒  5r^2 −8r+2=0  r=((8±(√(64−40)))/(10))=((4±(√6))/5)  here   r=((4−(√6))/5)

(r1,r,r)×(1,1,1)=(0,2r1,2r1)idintunderstandabove..butPA.λ^=PA2r2(1r+r+r)2=3{(r1)2+2r2r2}(1+r)2=3r2+3(1r)25r28r+2=0r=8±644010=4±65herer=465

Commented by mr W last updated on 08/Mar/23

PA^(→) ×PQ^(→) =(r−1,r,r)×(−1,1,1)=(0,2r−1,2r−1)

PA×PQ=(r1,r,r)×(1,1,1)=(0,2r1,2r1)

Commented by mr W last updated on 08/Mar/23

thanks for verifying sir!  it′s a nice question!

thanksforverifyingsir!itsanicequestion!

Answered by mr W last updated on 08/Mar/23

Commented by mr W last updated on 08/Mar/23

Commented by mr W last updated on 08/Mar/23

for this case we get aslo  r=((4−(√6))/5)

forthiscasewegetaslor=465

Commented by ajfour last updated on 08/Mar/23

thank you sir, well examined   and solved.

thankyousir,wellexaminedandsolved.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com