Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 188912 by Mingma last updated on 08/Mar/23

Answered by a.lgnaoui last updated on 09/Mar/23

posons  (θ/3)=x  sin (((π−θ)/3))=sin ((π/3)−x)=(1/2)((√3)cos x−sin x)  sin (((π+θ)/3))=sin ((π/3)+x)=(1/2)((√3)cos x+sin x)      sin^3 x −(3/4)sin x+((1+(√5))/(16))=0  •sin x=−0,9781476..         (1)  •sin x=+0,3090169..          (2)  •sin x=+0,6691306..           (3)    (1): x=−78°      ⇒   θ=−234  (2): x=      18°       ⇒   θ=       54  (3): x=       42       ⇒    θ=     126     for   0<θ<π    Solutions={54;126}

posonsθ3=xsin(πθ3)=sin(π3x)=12(3cosxsinx)sin(π+θ3)=sin(π3+x)=12(3cosx+sinx)sin3x34sinx+1+516=0sinx=0,9781476..(1)sinx=+0,3090169..(2)sinx=+0,6691306..(3)(1):x=78°θ=234(2):x=18°θ=54(3):x=42θ=126for0<θ<πSolutions={54;126}

Commented by a.lgnaoui last updated on 08/Mar/23

Commented by Mingma last updated on 09/Mar/23

Excellent!

Answered by mr W last updated on 09/Mar/23

recall   sin α sin β=(1/2)[cos (α−β)−cos (α+β)]  sin 3x=sin x(3−4 sin^2  x)  sin 54°=sin ((3π)/(10))=((1+(√5))/4)    let x=(θ/3)  sin ((π/3)−x) sin ((π/3)+x)  =(1/2)[cos (−2x)−cos ((2π)/3)]  =(1/2)[cos (2x)+(1/2)]  =(1/4)(3−4 sin^2  x)  eqn. becomes to  (1/4)(3−4 sin^2  x)sin x=((1+(√5))/(16))  (3−4 sin^2  x)sin x=((1+(√5))/4)  sin 3x=((1+(√5))/4)  sin θ=((1+(√5))/4)  ⇒θ=nπ+(−1)^n  sin^(−1) ((1+(√5))/4)  ⇒θ=nπ+(((−1)^n 3π)/(10))   within 0<θ<π  ⇒θ=((3π)/(10)) or ((7π)/(10)), i.e. 54° or 126°

recallsinαsinβ=12[cos(αβ)cos(α+β)]sin3x=sinx(34sin2x)sin54°=sin3π10=1+54letx=θ3sin(π3x)sin(π3+x)=12[cos(2x)cos2π3]=12[cos(2x)+12]=14(34sin2x)eqn.becomesto14(34sin2x)sinx=1+516(34sin2x)sinx=1+54sin3x=1+54sinθ=1+54θ=nπ+(1)nsin11+54θ=nπ+(1)n3π10within0<θ<πθ=3π10or7π10,i.e.54°or126°

Commented by manxsol last updated on 09/Mar/23

Clear job. Perfect!

Clearjob.Perfect!

Answered by Frix last updated on 09/Mar/23

Use trigonometric formulas to get  sin ((π−θ)/3) sin (θ/3) sin ((π+θ)/3) =((sin x)/4)  sin x=((1+(√5))/4) ∧ 0<x<π ⇒  x=((3π)/(10))∨x=((7π)/(10))

Usetrigonometricformulastogetsinπθ3sinθ3sinπ+θ3=sinx4sinx=1+540<x<πx=3π10x=7π10

Answered by mnjuly1970 last updated on 09/Mar/23

   sin(x ).sin((π/3) −x ).sin((π/3)+x )=^(easy)  ((sin(3x))/4)     x → (x/3)        sin((x/3)).sin((π/3) −(x/3) ).sin((π/3)+(x/3))=(1/4)sin(x)       x= (π/(10))

sin(x).sin(π3x).sin(π3+x)=easysin(3x)4xx3sin(x3).sin(π3x3).sin(π3+x3)=14sin(x)x=π10

Terms of Service

Privacy Policy

Contact: info@tinkutara.com