Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 1890 by Rasheed Soomro last updated on 21/Oct/15

Solve for x        tan x +tan 2x −tan 3x =0  Some one had posted this question and I had answered it  but then thread was deleted!  I think that the question is not importanceless , so I hav  reposted it.

$${Solve}\:{for}\:{x} \\ $$$$\:\:\:\:\:\:{tan}\:{x}\:+{tan}\:\mathrm{2}{x}\:−{tan}\:\mathrm{3}{x}\:=\mathrm{0} \\ $$$${Some}\:{one}\:{had}\:{posted}\:{this}\:{question}\:{and}\:{I}\:{had}\:{answered}\:{it} \\ $$$${but}\:{then}\:{thread}\:{was}\:{deleted}! \\ $$$${I}\:{think}\:{that}\:{the}\:{question}\:{is}\:{not}\:{importanceless}\:,\:{so}\:{I}\:{hav} \\ $$$${reposted}\:{it}. \\ $$

Commented by Rasheed Soomro last updated on 22/Oct/15

Question sholdn′t be deleted/changed  in case it is answered /commented.  Because after being answered/commented it is no longer  remained your private matter.

$${Question}\:{sholdn}'{t}\:{be}\:{deleted}/{changed}\:\:{in}\:{case}\:{it}\:{is}\:{answered}\:/{commented}. \\ $$$${Because}\:{after}\:{being}\:{answered}/{commented}\:{it}\:{is}\:{no}\:{longer} \\ $$$${remained}\:{your}\:{private}\:{matter}. \\ $$

Commented by 123456 last updated on 21/Oct/15

all questions are importants :3

$$\mathrm{all}\:\mathrm{questions}\:\mathrm{are}\:\mathrm{importants}\::\mathrm{3} \\ $$

Commented by Rasheed Soomro last updated on 23/Oct/15

of course!

$${of}\:{course}! \\ $$

Answered by Yozzy last updated on 22/Oct/15

One method of approach involves the use of the following trigonometric identity:                                                         tan3x=((tan2x+tanx)/(1−tan2xtanx))..............(1)  The given equation then takes the form,after factorising,                     (tanx+tan2x)(1−(1/(1−tanxtan2x)))=0  {tanxtan2x≠1}                     (tanx+tan2x)(((1−tanxtan2x−1)/(1−tanxtan2x)))=0                                      ((tanxtan2x(tanx+tan2x))/(tanxtan2x−1))=0.................(2)  For (2) to be true we have the possibility of tanx=0 or tan2x=0 or tanx+tan2x=0.  If tanx=0 we have a general solution as x=nπ , n∈Z.  If tan2x=0 we have a general solution as x=((nπ)/2), n∈Z.  If tanx+tan2x=0⇒tan2x=−tanx⇒2x=−x+nπ⇒x=((nπ)/3), n∈Z.  To check the last solution function (since x is then a function of n) observe  that from (1)                                 tanx+tan2x=tan3x(1−tanxtan2x).  Having agreed upon that tanxtan2x≠1⇒tanxtan2x−1≠0. Therefore we ought  to have tan3x=0⇒3x=nπ⇒x=((nπ)/3), n∈Z.  Hence, a possible general solution is given as                           S={x∈R, n,m,q∈Z∣x=nπ ∨ x=((mπ)/2) ∨ x=((qπ)/3)}.  However, if m is odd we that the equation is not satified since tan((mπ)/2) is undefined  for m odd so that we have the true solution set                                        S={x∈R,n,q∈Z∣x=nπ∨x=((qπ)/3)}.  If tanxtan2x=1⇒2tan^2 x=1−tan^2 x⇒tan^2 x=(1/3)⇒tanx=±(1/(√3))⇒x= { (((((6n+1)/6))π   n∈Z)),(((((6n−1)/6))π  n∈Z  )) :}  The above general solution incurs a solution set S^′  completely disjoint from  S since 6n±1 is odd ∀n∈Z⇒ 6 never divides 6n±1 to yield a quotient that is an  integral multiple of 1, (1/2) and (1/3). Therefore, S appears to be the complete set of real   solutions. I wonder what complex solutions exist for the equation.

$${One}\:{method}\:{of}\:{approach}\:{involves}\:{the}\:{use}\:{of}\:{the}\:{following}\:{trigonometric}\:{identity}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{tan}\mathrm{3}{x}=\frac{{tan}\mathrm{2}{x}+{tanx}}{\mathrm{1}−{tan}\mathrm{2}{xtanx}}..............\left(\mathrm{1}\right) \\ $$$${The}\:{given}\:{equation}\:{then}\:{takes}\:{the}\:{form},{after}\:{factorising}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({tanx}+{tan}\mathrm{2}{x}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−{tanxtan}\mathrm{2}{x}}\right)=\mathrm{0}\:\:\left\{{tanxtan}\mathrm{2}{x}\neq\mathrm{1}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({tanx}+{tan}\mathrm{2}{x}\right)\left(\frac{\mathrm{1}−{tanxtan}\mathrm{2}{x}−\mathrm{1}}{\mathrm{1}−{tanxtan}\mathrm{2}{x}}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{tanxtan}\mathrm{2}{x}\left({tanx}+{tan}\mathrm{2}{x}\right)}{{tanxtan}\mathrm{2}{x}−\mathrm{1}}=\mathrm{0}.................\left(\mathrm{2}\right) \\ $$$${For}\:\left(\mathrm{2}\right)\:{to}\:{be}\:{true}\:{we}\:{have}\:{the}\:{possibility}\:{of}\:{tanx}=\mathrm{0}\:{or}\:{tan}\mathrm{2}{x}=\mathrm{0}\:{or}\:{tanx}+{tan}\mathrm{2}{x}=\mathrm{0}. \\ $$$${If}\:{tanx}=\mathrm{0}\:{we}\:{have}\:{a}\:{general}\:{solution}\:{as}\:{x}={n}\pi\:,\:{n}\in\mathbb{Z}. \\ $$$${If}\:{tan}\mathrm{2}{x}=\mathrm{0}\:{we}\:{have}\:{a}\:{general}\:{solution}\:{as}\:{x}=\frac{{n}\pi}{\mathrm{2}},\:{n}\in\mathbb{Z}. \\ $$$${If}\:{tanx}+{tan}\mathrm{2}{x}=\mathrm{0}\Rightarrow{tan}\mathrm{2}{x}=−{tanx}\Rightarrow\mathrm{2}{x}=−{x}+{n}\pi\Rightarrow{x}=\frac{{n}\pi}{\mathrm{3}},\:{n}\in\mathbb{Z}. \\ $$$${To}\:{check}\:{the}\:{last}\:{solution}\:{function}\:\left({since}\:{x}\:{is}\:{then}\:{a}\:{function}\:{of}\:{n}\right)\:{observe} \\ $$$${that}\:{from}\:\left(\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{tanx}+{tan}\mathrm{2}{x}={tan}\mathrm{3}{x}\left(\mathrm{1}−{tanxtan}\mathrm{2}{x}\right). \\ $$$${Having}\:{agreed}\:{upon}\:{that}\:{tanxtan}\mathrm{2}{x}\neq\mathrm{1}\Rightarrow{tanxtan}\mathrm{2}{x}−\mathrm{1}\neq\mathrm{0}.\:{Therefore}\:{we}\:{ought} \\ $$$${to}\:{have}\:{tan}\mathrm{3}{x}=\mathrm{0}\Rightarrow\mathrm{3}{x}={n}\pi\Rightarrow{x}=\frac{{n}\pi}{\mathrm{3}},\:{n}\in\mathbb{Z}. \\ $$$${Hence},\:{a}\:{possible}\:{general}\:{solution}\:{is}\:{given}\:{as} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{S}=\left\{{x}\in\mathbb{R},\:{n},{m},{q}\in\mathbb{Z}\mid{x}={n}\pi\:\vee\:{x}=\frac{{m}\pi}{\mathrm{2}}\:\vee\:{x}=\frac{{q}\pi}{\mathrm{3}}\right\}. \\ $$$${However},\:{if}\:{m}\:{is}\:{odd}\:{we}\:{that}\:{the}\:{equation}\:{is}\:{not}\:{satified}\:{since}\:{tan}\frac{{m}\pi}{\mathrm{2}}\:{is}\:{undefined} \\ $$$${for}\:{m}\:{odd}\:{so}\:{that}\:{we}\:{have}\:{the}\:{true}\:{solution}\:{set} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{S}=\left\{{x}\in\mathbb{R},{n},{q}\in\mathbb{Z}\mid{x}={n}\pi\vee{x}=\frac{{q}\pi}{\mathrm{3}}\right\}. \\ $$$${If}\:{tanxtan}\mathrm{2}{x}=\mathrm{1}\Rightarrow\mathrm{2}{tan}^{\mathrm{2}} {x}=\mathrm{1}−{tan}^{\mathrm{2}} {x}\Rightarrow{tan}^{\mathrm{2}} {x}=\frac{\mathrm{1}}{\mathrm{3}}\Rightarrow{tanx}=\pm\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\Rightarrow{x}=\begin{cases}{\left(\frac{\mathrm{6}{n}+\mathrm{1}}{\mathrm{6}}\right)\pi\:\:\:{n}\in\mathbb{Z}}\\{\left(\frac{\mathrm{6}{n}−\mathrm{1}}{\mathrm{6}}\right)\pi\:\:{n}\in\mathbb{Z}\:\:}\end{cases} \\ $$$${The}\:{above}\:{general}\:{solution}\:{incurs}\:{a}\:{solution}\:{set}\:{S}^{'} \:{completely}\:{disjoint}\:{from} \\ $$$${S}\:{since}\:\mathrm{6}{n}\pm\mathrm{1}\:{is}\:{odd}\:\forall{n}\in\mathbb{Z}\Rightarrow\:\mathrm{6}\:{never}\:{divides}\:\mathrm{6}{n}\pm\mathrm{1}\:{to}\:{yield}\:{a}\:{quotient}\:{that}\:{is}\:{an} \\ $$$${integral}\:{multiple}\:{of}\:\mathrm{1},\:\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:\frac{\mathrm{1}}{\mathrm{3}}.\:{Therefore},\:{S}\:{appears}\:{to}\:{be}\:{the}\:{complete}\:{set}\:{of}\:{real}\: \\ $$$${solutions}.\:{I}\:{wonder}\:{what}\:{complex}\:{solutions}\:{exist}\:{for}\:{the}\:{equation}. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Answered by Rasheed Soomro last updated on 22/Oct/15

Easy and Short approach  tan x +tan 2x −tan 3x =0  tan x +tan 2x −tan(2x+x) =0  tan x +tan 2x −((tan 2x +tan x)/(1−tan 2x tan x)) =0  Multiplying both sides by  1−tan 2x tan x :  tan x^(×) −tan 2x tan^2  x+tan 2x^(×)  −tan^2  2x tan x−tan 2x^(×)  −tan x^(×) =0  −tan 2x tan^2  x−tan^2  2x tan x=0  tan 2x tan^2  x+tan^2  2x tan x=0  tan 2x tan x(tan x+tan 2x)=0  tan 2x=0 ∣ tan x=0 ∣ tan x+tan 2x=0  tan x=0 ⇒x=nπ  tan 2x=0 ⇒x=((nπ)/2)  tan x+tan 2x=0⇒tan x=−tan 2x⇒tan x=tan(−2x)         ⇒x=−2x+nπ⇒x=((nπ)/3)  Solution Set for x  {nπ , ((nπ)/2) , ((nπ)/3)}  Note: In solving  tan x+tan 2x=0  I have got  help from   the above answer by Yozzy.

$${Easy}\:{and}\:{Short}\:{approach} \\ $$$${tan}\:{x}\:+{tan}\:\mathrm{2}{x}\:−{tan}\:\mathrm{3}{x}\:=\mathrm{0} \\ $$$${tan}\:{x}\:+{tan}\:\mathrm{2}{x}\:−{tan}\left(\mathrm{2}{x}+{x}\right)\:=\mathrm{0} \\ $$$${tan}\:{x}\:+{tan}\:\mathrm{2}{x}\:−\frac{{tan}\:\mathrm{2}{x}\:+{tan}\:{x}}{\mathrm{1}−{tan}\:\mathrm{2}{x}\:{tan}\:{x}}\:=\mathrm{0} \\ $$$${Multiplying}\:{both}\:{sides}\:{by}\:\:\mathrm{1}−{tan}\:\mathrm{2}{x}\:{tan}\:{x}\:: \\ $$$$\overset{×} {{tan}\:{x}}−{tan}\:\mathrm{2}{x}\:{tan}^{\mathrm{2}} \:{x}+\overset{×} {{tan}\:\mathrm{2}{x}}\:−{tan}^{\mathrm{2}} \:\mathrm{2}{x}\:{tan}\:{x}−\overset{×} {{tan}\:\mathrm{2}{x}}\:−\overset{×} {{tan}\:{x}}=\mathrm{0} \\ $$$$−{tan}\:\mathrm{2}{x}\:{tan}^{\mathrm{2}} \:{x}−{tan}^{\mathrm{2}} \:\mathrm{2}{x}\:{tan}\:{x}=\mathrm{0} \\ $$$${tan}\:\mathrm{2}{x}\:{tan}^{\mathrm{2}} \:{x}+{tan}^{\mathrm{2}} \:\mathrm{2}{x}\:{tan}\:{x}=\mathrm{0} \\ $$$${tan}\:\mathrm{2}{x}\:{tan}\:{x}\left({tan}\:{x}+{tan}\:\mathrm{2}{x}\right)=\mathrm{0} \\ $$$${tan}\:\mathrm{2}{x}=\mathrm{0}\:\mid\:{tan}\:{x}=\mathrm{0}\:\mid\:{tan}\:{x}+{tan}\:\mathrm{2}{x}=\mathrm{0} \\ $$$${tan}\:{x}=\mathrm{0}\:\Rightarrow{x}={n}\pi \\ $$$${tan}\:\mathrm{2}{x}=\mathrm{0}\:\Rightarrow{x}=\frac{{n}\pi}{\mathrm{2}} \\ $$$${tan}\:{x}+{tan}\:\mathrm{2}{x}=\mathrm{0}\Rightarrow{tan}\:{x}=−{tan}\:\mathrm{2}{x}\Rightarrow{tan}\:{x}={tan}\left(−\mathrm{2}{x}\right) \\ $$$$\:\:\:\:\:\:\:\Rightarrow{x}=−\mathrm{2}{x}+{n}\pi\Rightarrow{x}=\frac{{n}\pi}{\mathrm{3}} \\ $$$${Solution}\:{Set}\:{for}\:{x} \\ $$$$\left\{{n}\pi\:,\:\frac{{n}\pi}{\mathrm{2}}\:,\:\frac{{n}\pi}{\mathrm{3}}\right\} \\ $$$${Note}:\:{In}\:{solving}\:\:{tan}\:{x}+{tan}\:\mathrm{2}{x}=\mathrm{0}\:\:{I}\:{have}\:{got}\:\:{help}\:{from} \\ $$$$\:{the}\:{above}\:{answer}\:{by}\:{Yozzy}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com