Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 189066 by cortano12 last updated on 11/Mar/23

 Given f(x)+∫_0 ^1 (x+y)^2  f(y) dy=2x^2 −3x+1   find f(x).

Givenf(x)+10(x+y)2f(y)dy=2x23x+1findf(x).

Answered by horsebrand11 last updated on 11/Mar/23

2x^2 −3x+1=f(x)+∫_0 ^1 (x^2 +2xy+y^2 )dy  2x^2 −3x+1=f(x)+x^2 ∫_0 ^1 f(y)dy+2x∫_0 ^1 y f(y)dy+∫_0 ^1 y^2  f(y) dy  let  { ((p=∫_0 ^1 f(y)dy)),((q=∫_0 ^1 y f(y)dy )),((r=∫_0 ^1 y^2  f(y)dy )) :}  f(x)=2x^2 −px^2 −3x−2qx+1−r  f(x)=(2−p)x^2 −(3+2q)x+(1−r)

2x23x+1=f(x)+10(x2+2xy+y2)dy2x23x+1=f(x)+x210f(y)dy+2x10yf(y)dy+10y2f(y)dylet{p=10f(y)dyq=10yf(y)dyr=10y2f(y)dyf(x)=2x2px23x2qx+1rf(x)=(2p)x2(3+2q)x+(1r)

Answered by mr W last updated on 11/Mar/23

f(x)+∫_0 ^1 (x+y)^2 f(y)dy=2x^2 −3x+1  f(x)+∫_0 ^1 (x^2 +2xy+y^2 )f(y)dy=2x^2 −3x+1  f(x)+x^2 ∫_0 ^1 f(y)dy+2x∫_0 ^1 yf(y)dy+∫_0 ^1 y^2 f(y)dy=2x^2 −3x+1  f(x)+Ax^2 +2Bx+C=2x^2 −3x+1  ⇒f(x)=(2−A)x^2 −(3+2B)x+(1−C)  A=∫_0 ^1 f(y)dy=∫_0 ^1 [(2−A)y^2 −(3+2B)y+(1−C)]dy  A=(2−A)(1/3)−(3+2B)(1/2)+(1−C)  ⇒8A+6B+6C=1   ...(i)  B=∫_0 ^1 yf(y)dy=∫_0 ^1 [(2−A)y^3 −(3+2B)y^2 +(1−C)y]dy  B=(2−A)(1/4)−(3+2B)(1/3)+(1−C)(1/2)  ⇒3A+20B+6C=0   ...(ii)  C=∫_0 ^1 y^2 f(y)dy=∫_0 ^1 [(2−A)y^4 −(3+2B)y^3 +(1−C)y^2 ]dy  C=(2−A)(1/5)−(3+2B)(1/4)+(1−C)(1/3)  ⇒12A+30B+80C=−1   ...(iii)  from (i),(ii),(iii):  A=((71)/(453)),B=−(7/(453)),C=−((356)/(1359))  ⇒f(x)=((835x^2 )/(453))−((1345x)/(453))+((1715)/(1359))

f(x)+01(x+y)2f(y)dy=2x23x+1f(x)+01(x2+2xy+y2)f(y)dy=2x23x+1f(x)+x201f(y)dy+2x01yf(y)dy+01y2f(y)dy=2x23x+1f(x)+Ax2+2Bx+C=2x23x+1f(x)=(2A)x2(3+2B)x+(1C)A=01f(y)dy=01[(2A)y2(3+2B)y+(1C)]dyA=(2A)13(3+2B)12+(1C)8A+6B+6C=1...(i)B=01yf(y)dy=01[(2A)y3(3+2B)y2+(1C)y]dyB=(2A)14(3+2B)13+(1C)123A+20B+6C=0...(ii)C=01y2f(y)dy=01[(2A)y4(3+2B)y3+(1C)y2]dyC=(2A)15(3+2B)14+(1C)1312A+30B+80C=1...(iii)from(i),(ii),(iii):A=71453,B=7453,C=3561359f(x)=835x24531345x453+17151359

Terms of Service

Privacy Policy

Contact: info@tinkutara.com