All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 189066 by cortano12 last updated on 11/Mar/23
Givenf(x)+∫10(x+y)2f(y)dy=2x2−3x+1findf(x).
Answered by horsebrand11 last updated on 11/Mar/23
2x2−3x+1=f(x)+∫10(x2+2xy+y2)dy2x2−3x+1=f(x)+x2∫10f(y)dy+2x∫10yf(y)dy+∫10y2f(y)dylet{p=∫10f(y)dyq=∫10yf(y)dyr=∫10y2f(y)dyf(x)=2x2−px2−3x−2qx+1−rf(x)=(2−p)x2−(3+2q)x+(1−r)
Answered by mr W last updated on 11/Mar/23
f(x)+∫01(x+y)2f(y)dy=2x2−3x+1f(x)+∫01(x2+2xy+y2)f(y)dy=2x2−3x+1f(x)+x2∫01f(y)dy+2x∫01yf(y)dy+∫01y2f(y)dy=2x2−3x+1f(x)+Ax2+2Bx+C=2x2−3x+1⇒f(x)=(2−A)x2−(3+2B)x+(1−C)A=∫01f(y)dy=∫01[(2−A)y2−(3+2B)y+(1−C)]dyA=(2−A)13−(3+2B)12+(1−C)⇒8A+6B+6C=1...(i)B=∫01yf(y)dy=∫01[(2−A)y3−(3+2B)y2+(1−C)y]dyB=(2−A)14−(3+2B)13+(1−C)12⇒3A+20B+6C=0...(ii)C=∫01y2f(y)dy=∫01[(2−A)y4−(3+2B)y3+(1−C)y2]dyC=(2−A)15−(3+2B)14+(1−C)13⇒12A+30B+80C=−1...(iii)from(i),(ii),(iii):A=71453,B=−7453,C=−3561359⇒f(x)=835x2453−1345x453+17151359
Terms of Service
Privacy Policy
Contact: info@tinkutara.com