Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 189304 by ajfour last updated on 14/Mar/23

Commented by ajfour last updated on 14/Mar/23

Find largest radius ball beneath  cone and wirhin cyclinder.

Findlargestradiusballbeneathconeandwirhincyclinder.

Answered by mr W last updated on 14/Mar/23

Commented by mr W last updated on 14/Mar/23

Commented by mr W last updated on 15/Mar/23

tan β=(b/(2a))  m=tan (β+θ)=(((b/(2a))+tan θ)/(1−((b tan θ)/(2a))))=((b+2a tan θ)/(2a−b tan θ))  center of ball:  C[(a−r)cos φ, (a−r)sin φ, r]  vertex of cone:  B(−a,0,0)  axis of cone:  BG^(→) =(1, 0, m)  BC^(→) =((a−r)cos φ+a,  (a−r)sin φ, r)  BC=(√([(a−r)cos φ+a]^2 +(a−r)^2 sin^2  φ+r^2 ))  BC=(√(a^2 +(a−r)^2 +r^2 +2a(a−r)cos φ))  cos (α+θ)=((BG^(→) ∙BC^(→) )/(∣BG^(→) ∣∣BC^(→) ∣))=(((a−r)cos φ+a+mr)/( BC×(√(1+m^2 ))))  BC cos α cos θ−BC sin α sin θ=(((a−r)cos φ+a+mr)/( (√(1+m^2 ))))  cos θ (√(a^2 +(a−r)^2 +2a(a−r)cos φ))−r sin θ=(((a−r)cos φ+a+mr)/( (√(1+m^2 ))))  let λ=(r/a)  ⇒cos θ (√(1+(1−λ)^2 +2(1−λ) cos φ))−λ sin θ=(((1−λ) cos φ+1+mλ)/( (√(1+m^2 ))))  or  [(1+m^2 )cos^2  θ−(m+sin θ (√(1+m^2 ))−cos φ)^2 ]λ^2 −2(1+cos φ)[(1+m^2 )cos^2  θ+m+sin θ (√(1+m^2 ))−cos φ]λ+2(1+cos φ)(1+m^2 )cos^2  θ−(1+cos φ)^2 =0  ⇒λ=(((1+cos φ)[(1+m^2 )cos^2  θ+m+sin θ (√(1+m^2 ))−cos φ]−(√((1+cos φ)^2 [(1+m^2 )cos^2  θ+m+sin θ (√(1+m^2 ))−cos φ]^2 −[(1+m^2 )cos^2  θ−(m+sin θ (√(1+m^2 ))−cos φ)^2 ][2(1+cos φ)(1+m^2 )cos^2  θ−(1+cos φ)^2 ])))/((1+m^2 )cos^2  θ−(m+sin θ (√(1+m^2 ))−cos φ)^2 ))  λ_(max)  is not at φ=0° as following  example shows.  example: a=1, b=1, θ=30°   ⇒r_(max) ≈0.3823 at φ≈28.1826°

tanβ=b2am=tan(β+θ)=b2a+tanθ1btanθ2a=b+2atanθ2abtanθcenterofball:C[(ar)cosϕ,(ar)sinϕ,r]vertexofcone:B(a,0,0)axisofcone:BG=(1,0,m)BC=((ar)cosϕ+a,(ar)sinϕ,r)BC=[(ar)cosϕ+a]2+(ar)2sin2ϕ+r2BC=a2+(ar)2+r2+2a(ar)cosϕcos(α+θ)=BGBCBG∣∣BC=(ar)cosϕ+a+mrBC×1+m2BCcosαcosθBCsinαsinθ=(ar)cosϕ+a+mr1+m2cosθa2+(ar)2+2a(ar)cosϕrsinθ=(ar)cosϕ+a+mr1+m2letλ=racosθ1+(1λ)2+2(1λ)cosϕλsinθ=(1λ)cosϕ+1+mλ1+m2or[(1+m2)cos2θ(m+sinθ1+m2cosϕ)2]λ22(1+cosϕ)[(1+m2)cos2θ+m+sinθ1+m2cosϕ]λ+2(1+cosϕ)(1+m2)cos2θ(1+cosϕ)2=0λ=(1+cosϕ)[(1+m2)cos2θ+m+sinθ1+m2cosϕ](1+cosϕ)2[(1+m2)cos2θ+m+sinθ1+m2cosϕ]2[(1+m2)cos2θ(m+sinθ1+m2cosϕ)2][2(1+cosϕ)(1+m2)cos2θ(1+cosϕ)2](1+m2)cos2θ(m+sinθ1+m2cosϕ)2λmaxisnotatϕ=0°asfollowingexampleshows.example:a=1,b=1,θ=30°rmax0.3823atϕ28.1826°

Commented by mr W last updated on 14/Mar/23

Commented by ajfour last updated on 23/Mar/23

Sir i had gotten busy, so i posted my solution after a week and thank you incredible effort you have put in. I truly believe your answer should be right, but can u cast a glance and help in finding mistake in mine ..

Commented by mr W last updated on 12/Apr/23

sorry i saw this message right now,  because i don′t get notification  automatically.  i′ll try to follow your solution.

sorryisawthismessagerightnow,becauseidontgetnotificationautomatically.illtrytofollowyoursolution.

Answered by ajfour last updated on 22/Mar/23

Commented by ajfour last updated on 23/Mar/23

tan θ=m  tan β=(b/(2a))  tan (θ+β)=q=((m+(b/(2a)))/(1−((bm)/(2a))))=((2am+b)/(2a−mb))  AJ=AD=s    BJ=ms  BH=r+ms  DP=(r+ms)cos δ  ABsin (θ+β)=r+(r+ms)sin δ      AB=(s/(cos θ))=s(√(1+m^2 ))  ⇒  ((ssin (θ+β))/(cos θ))=r+(r+ms)sin δ             ......(i)  let  CP=p=a−AP  AP=ABcos (θ+β)  ⇒  p=a−((scos (θ+β))/(cos θ))  cos φ=((DP^2 −(a−r)^2 −p^2 )/(2p(a−r)))  also  cos φ=((s^2 −(a−r)^2 −a^2 )/(2a(a−r)))  let  (r/a)=x  ,   (s/a)=y  ,  (p/a)=z  ⇒  (x+my)^2 cos^2 δ−(1−x)^2 −z^2    =z{y^2 −(1−x)^2 −1}       ....(ii)    p=a−((scos (θ+β))/(cos θ))  ⇒ z=1−((ycos (θ+β))/(cos θ))    ((ssin (θ+β))/(cos θ))=r+(r+ms)sin δ  ⇒   (x+my)^2 sin^2 δ={((ysin (θ+β))/(cos θ))−x}^2   Adding to  (ii)  (x+my)^2 =  (1−x)^2 +z^2 +z{y^2 −(1−x)^2 −1}                  +{((ysin (θ+β))/(cos θ))−x}^2   now   z=1−((ycos (θ+β))/(cos θ))  ⇒    (x+((ysin θ)/(cos θ)))^2 =  (1−x)^2 +{1−((ycos (θ+β))/(cos θ))}^2    +{1−((ycos (θ+β))/(cos θ))}{y^2 −(1−x)^2 −1}        +{((ysin (θ+β))/(cos θ))−x}^2   ⇒   x^2 +((y^2 sin^2 θ)/(cos^2 θ))+((2xysin θ)/(cos θ))=(1−x)^2 +1  +((y^2 cos^2 (θ+β))/(cos^2 θ))−((2ycos (θ+β))/(cos θ))  +y^2 −1−(1−x)^2   +x^2 +((y^2 sin^2 (θ+β))/(cos^2 θ))−((2xysin (θ+β))/(cos θ))  +{1+(1−x)^2 −y^2 }((ycos (θ+β))/(cos θ))  ⇒  ((2xy)/(cos θ)){sin θ+sin (θ+β)}  =2y^2 +((y(x^2 −2x−y^2 )cos (θ+β))/(cos θ))  ⇒    2x{sin θ+sin (θ+β)}     =2ycos θ+(x^2 −2x−y^2 )cos (θ+β)  differentiating w.r.t.    y   with  (dx/dy)=0   ⇒  2cos θ=2ycos (θ+β)  ⇒  y=((cos θ)/(cos (θ+β)))  ⇒  2x_m {sin θ+sin (θ+β)}cos (θ+β)    =x_m (x_m −2)cos^2 (θ+β)+cos^2 θ  If  θ=30°   tan β=(b/(2a))=(1/2)   ,  then  tan (θ+β)=((2+(√3))/(2(√3)−1))      hence  2x_m {(1/2)+((2+(√3))/(2(√5)))}(((2(√3)−1))/(2(√5)))     =x_m (x_m −2)(((2(√3)−1)^2 )/(20))+(3/4)  ⇒ 2x_m {((2(√3)−1)/(4(√5)))+(((2(√3)−1)^2 )/(10))}    =(((2(√3)−1)^2 x_m ^2 )/(20))+(3/4)  ⇒   x_m ^2 −2x_m {((√5)/(2(√3)−1))+2}+((15)/((2(√3)−1)^2 ))=0  say  (2(√3)−1)x_m =q  q^2 −2q((√5)+4(√3)−2)+15=0  ⇒  q ≈ 1.1371  x_m =(r_m /a)=(q/((2(√3)−1)))≈ 0.4615

tanθ=mtanβ=b2atan(θ+β)=q=m+b2a1bm2a=2am+b2ambAJ=AD=sBJ=msBH=r+msDP=(r+ms)cosδABsin(θ+β)=r+(r+ms)sinδAB=scosθ=s1+m2ssin(θ+β)cosθ=r+(r+ms)sinδ......(i)letCP=p=aAPAP=ABcos(θ+β)p=ascos(θ+β)cosθcosϕ=DP2(ar)2p22p(ar)alsocosϕ=s2(ar)2a22a(ar)letra=x,sa=y,pa=z(x+my)2cos2δ(1x)2z2=z{y2(1x)21}....(ii)p=ascos(θ+β)cosθz=1ycos(θ+β)cosθssin(θ+β)cosθ=r+(r+ms)sinδ(x+my)2sin2δ={ysin(θ+β)cosθx}2Addingto(ii)(x+my)2=(1x)2+z2+z{y2(1x)21}+{ysin(θ+β)cosθx}2nowz=1ycos(θ+β)cosθ(x+ysinθcosθ)2=(1x)2+{1ycos(θ+β)cosθ}2+{1ycos(θ+β)cosθ}{y2(1x)21}+{ysin(θ+β)cosθx}2x2+y2sin2θcos2θ+2xysinθcosθ=(1x)2+1+y2cos2(θ+β)cos2θ2ycos(θ+β)cosθ+y21(1x)2+x2+y2sin2(θ+β)cos2θ2xysin(θ+β)cosθ+{1+(1x)2y2}ycos(θ+β)cosθ2xycosθ{sinθ+sin(θ+β)}=2y2+y(x22xy2)cos(θ+β)cosθ2x{sinθ+sin(θ+β)}=2ycosθ+(x22xy2)cos(θ+β)differentiatingw.r.t.ywithdxdy=02cosθ=2ycos(θ+β)y=cosθcos(θ+β)2xm{sinθ+sin(θ+β)}cos(θ+β)=xm(xm2)cos2(θ+β)+cos2θIfθ=30°tanβ=b2a=12,thentan(θ+β)=2+3231hence2xm{12+2+325}(231)25=xm(xm2)(231)220+342xm{23145+(231)210}=(231)2xm220+34xm22xm{5231+2}+15(231)2=0say(231)xm=qq22q(5+432)+15=0q1.1371xm=rma=q(231)0.4615

Terms of Service

Privacy Policy

Contact: info@tinkutara.com