Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 189465 by normans last updated on 17/Mar/23

Answered by HeferH last updated on 17/Mar/23

Commented by HeferH last updated on 17/Mar/23

 A_(seg)  = A_(sec) −A_(tri)    A_(seg)  = ((120°)/(180°))π∙ R^2  ∙(1/2)− (R/2)∙((R(√3))/2) = ((R^2 π)/3)−((R^2 (√3))/4)  = ((R^2 (4π−3(√3)))/(12))   A_(elipse) = 3πR^2    Yellow = 3πR^2 −2[πR^2 −((R^2 (4π−3(√3)))/(12))]+ [((R^2 (4π−3(√3)))/6) −((πR^2 )/4)]   = 3πR^2 −2πR^2 + ((R^2 (4π−3(√3)))/3)−((πR^2 )/4)   = ((3πR^2 )/4) + ((R^2 (4π−3(√3)))/3) =  ((25πR^2 −12R^2 (√3))/(12))    = ((R^2 (25π−12(√3)))/(12))   if R = 7, Yellow = 49 × (((25π−12(√3)))/(12))≈ 235.8u^2

Aseg=AsecAtriAseg=120°180°πR212R2R32=R2π3R234=R2(4π33)12Aelipse=3πR2Yellow=3πR22[πR2R2(4π33)12]+[R2(4π33)6πR24]=3πR22πR2+R2(4π33)3πR24=3πR24+R2(4π33)3=25πR212R2312=R2(25π123)12ifR=7,Yellow=49×(25π123)12235.8u2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com