Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 189484 by mr W last updated on 17/Mar/23

Commented by mr W last updated on 17/Mar/23

an unsolved old question

anunsolvedoldquestion

Answered by mr W last updated on 17/Mar/23

Commented by mr W last updated on 17/Mar/23

a^→ +b^→ +c^→ =0  AY^(→) =a^→ +(3/4)b^→   BZ^(→) =−a^→ −(1/4)c^→   CX^(→) =(3/4)a^→ +c^→   say AP=ξ×AY, BP=η×BZ  ξAY^(→) =a^→ +ηBZ^(→)   ξ(a^→ +(3/4)b^→ )=a^→ +η(−a^→ −(1/4)c^→ )  (1−(ξ/4)−η)a^→ +(((3ξ)/4)−(η/4))c^→ =0  ⇒η=3ξ  ⇒1−(ξ/4)−3ξ=0  ⇒ξ=(4/(13)), η=((12)/(13))  ⇒AP:PR:RY=4:8:1  [ABC]=Δ=52  [AYC]=(Δ/4)  [APZ]=(4/(13))×(1/4)×[AYC]=(Δ/(52))  [CRY]=(([AYC])/(13))=(Δ/(52))  [PZCR]=(Δ/4)−2×(Δ/(52))=((11Δ)/(52))  [PQR]=Δ−3×(Δ/(52))−3×((11Δ)/(52))=(4/(13))[ABC]  similary  [APQX]=[BYRQ]=((11Δ)/(52))  ⇒green area=Δ−3×((11Δ)/(52))=((19Δ)/(52))=19 ✓    [PQR]=Δ−3×(Δ/(52))−3×((11Δ)/(52))=(4/(13))[ABC]

a+b+c=0AY=a+34bBZ=a14cCX=34a+csayAP=ξ×AY,BP=η×BZξAY=a+ηBZξ(a+34b)=a+η(a14c)(1ξ4η)a+(3ξ4η4)c=0η=3ξ1ξ43ξ=0ξ=413,η=1213AP:PR:RY=4:8:1[ABC]=Δ=52[AYC]=Δ4[APZ]=413×14×[AYC]=Δ52[CRY]=[AYC]13=Δ52[PZCR]=Δ42×Δ52=11Δ52[PQR]=Δ3×Δ523×11Δ52=413[ABC]similary[APQX]=[BYRQ]=11Δ52greenarea=Δ3×11Δ52=19Δ52=19[PQR]=Δ3×Δ523×11Δ52=413[ABC]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com