Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 1895 by Yozzy last updated on 22/Oct/15

Let us generalise the result of taking the inverse tangent of a complex number  to the form                                             tan^(−1) (c+id)=a+ib  where a,b,c,d∈R and i=(√(−1)). Determine a and b respectively in terms  of c and d.

$${Let}\:{us}\:{generalise}\:{the}\:{result}\:{of}\:{taking}\:{the}\:{inverse}\:{tangent}\:{of}\:{a}\:{complex}\:{number} \\ $$$${to}\:{the}\:{form}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{tan}^{−\mathrm{1}} \left({c}+{id}\right)={a}+{ib} \\ $$$${where}\:{a},{b},{c},{d}\in\mathbb{R}\:{and}\:{i}=\sqrt{−\mathrm{1}}.\:{Determine}\:{a}\:{and}\:{b}\:{respectively}\:{in}\:{terms} \\ $$$${of}\:{c}\:{and}\:{d}.\: \\ $$

Commented by Rasheed Soomro last updated on 23/Oct/15

tan^(−1) (c+id)=a+ib  ⇔ c+id=tan(a+ib)=((tan a+tan ib)/(1−tan a. tan ib))  Now,                   tan z =((e^(iz) −e^(−iz) )/(e^(iz) +e^(−iz) )) , z∈C  So,          tan ib = ((e^(i(ib)) −e^(−i(ib)) )/(e^(i(ib)) +e^(−i(ib)) )) =((e^(−b) −e^b )/(e^(−b) +e^b ))  Clearly  ′ tan ib′ or′  ((e^(−b) −e^b )/(e^(−b) +e^b )) ′ is real , because b∈R.  And  that  means  tan(a+ib) is real.  So ,               c+id=tan(a+ib)⇒c=tan(a+ib)  ∧ d=0 !!!  But               c+id is given and d is not necessarly zero.  I−E   if a+ib (tan(c+id) is given then d=0                and if c+id is given with d≠0.....  If you see any logical defect pl inform me.  Continue

$${tan}^{−\mathrm{1}} \left({c}+{id}\right)={a}+{ib} \\ $$$$\Leftrightarrow\:{c}+{id}={tan}\left({a}+{ib}\right)=\frac{{tan}\:{a}+{tan}\:{ib}}{\mathrm{1}−{tan}\:{a}.\:{tan}\:{ib}} \\ $$$${Now}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{tan}\:{z}\:=\frac{{e}^{{iz}} −{e}^{−{iz}} }{{e}^{{iz}} +{e}^{−{iz}} }\:,\:{z}\in\mathbb{C} \\ $$$${So},\:\:\:\:\:\:\:\:\:\:{tan}\:{ib}\:=\:\frac{{e}^{{i}\left({ib}\right)} −{e}^{−{i}\left({ib}\right)} }{{e}^{{i}\left({ib}\right)} +{e}^{−{i}\left({ib}\right)} }\:=\frac{{e}^{−{b}} −{e}^{{b}} }{{e}^{−{b}} +{e}^{{b}} } \\ $$$${Clearly}\:\:'\:{tan}\:{ib}'\:{or}'\:\:\frac{{e}^{−{b}} −{e}^{{b}} }{{e}^{−{b}} +{e}^{{b}} }\:'\:{is}\:{real}\:,\:{because}\:{b}\in\mathbb{R}. \\ $$$${And}\:\:{that}\:\:{means}\:\:{tan}\left({a}+{ib}\right)\:{is}\:{real}. \\ $$$${So}\:, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{c}+{id}={tan}\left({a}+{ib}\right)\Rightarrow{c}={tan}\left({a}+{ib}\right)\:\:\wedge\:{d}=\mathrm{0}\:!!! \\ $$$${But}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{c}+{id}\:{is}\:{given}\:{and}\:{d}\:{is}\:{not}\:{necessarly}\:{zero}. \\ $$$${I}−{E}\:\:\:{if}\:{a}+{ib}\:\left({tan}\left({c}+{id}\right)\:{is}\:{given}\:{then}\:{d}=\mathrm{0}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{and}\:{if}\:{c}+{id}\:{is}\:{given}\:{with}\:{d}\neq\mathrm{0}..... \\ $$$${If}\:{you}\:{see}\:{any}\:{logical}\:{defect}\:{pl}\:{inform}\:{me}. \\ $$$${Continue} \\ $$

Commented by Yozzy last updated on 23/Oct/15

I appreciate that you′ve attempted the problem . Now I can therefore discuss it.  I believe though that tanib is not necessarily real because of the following bit  of mathematics.   By definition tanx=((sinx)/(cosx)). So, tanib=((sinib)/(cosib)).  The series expansions for sinx,sinhx,coshx and cosx help here.   sinx=x−(x^3 /(3!))+(x^5 /(5!))−(x^7 /(7!))+... ∀x  ∴ sinix=ix−(((ix)^3 )/(3!))+(((ix)^5 )/(5!))−(((ix)^7 )/(7!))+...  sinix=ix+((ix^3 )/(3!))+((ix^5 )/(5!))+((ix^7 )/(7!))+...=i(x+(x^3 /(3!))+(x^5 /(5!))+(x^7 /(7!))+...)  Since sinhx=x+(x^3 /(3!))+(x^5 /(5!))+(x^7 /(7!))+... ∀x  ⇒sinix=isinhx  cosx=1−(x^2 /(2!))+(x^4 /(4!))−(x^6 /(6!))+... ∀x  ∴ cosix=1−((i^2 x^2 )/(2!))+((i^4 x^4 )/(4!))−((i^6 x^6 )/(6!))+...  cosix=1+(x^2 /(2!))+(x^4 /(4!))+(x^6 /(6!))+...  But coshx=1+(x^2 /(2!))+(x^4 /(4!))+(x^6 /(6!))+... ∀x  ∴ cosix=coshx  Thus, tanib=((isinhb)/(coshb))=((i(e^b −e^(−b) ))/(e^b +e^(−b) )).

$${I}\:{appreciate}\:{that}\:{you}'{ve}\:{attempted}\:{the}\:{problem}\:.\:{Now}\:{I}\:{can}\:{therefore}\:{discuss}\:{it}. \\ $$$${I}\:{believe}\:{though}\:{that}\:{tanib}\:{is}\:{not}\:{necessarily}\:{real}\:{because}\:{of}\:{the}\:{following}\:{bit} \\ $$$${of}\:{mathematics}.\: \\ $$$${By}\:{definition}\:{tanx}=\frac{{sinx}}{{cosx}}.\:{So},\:{tanib}=\frac{{sinib}}{{cosib}}. \\ $$$${The}\:{series}\:{expansions}\:{for}\:{sinx},{sinhx},{coshx}\:{and}\:{cosx}\:{help}\:{here}.\: \\ $$$${sinx}={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}−\frac{{x}^{\mathrm{7}} }{\mathrm{7}!}+...\:\forall{x} \\ $$$$\therefore\:{sinix}={ix}−\frac{\left({ix}\right)^{\mathrm{3}} }{\mathrm{3}!}+\frac{\left({ix}\right)^{\mathrm{5}} }{\mathrm{5}!}−\frac{\left({ix}\right)^{\mathrm{7}} }{\mathrm{7}!}+... \\ $$$${sinix}={ix}+\frac{{ix}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{ix}^{\mathrm{5}} }{\mathrm{5}!}+\frac{{ix}^{\mathrm{7}} }{\mathrm{7}!}+...={i}\left({x}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}+\frac{{x}^{\mathrm{7}} }{\mathrm{7}!}+...\right) \\ $$$${Since}\:{sinhx}={x}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}+\frac{{x}^{\mathrm{7}} }{\mathrm{7}!}+...\:\forall{x} \\ $$$$\Rightarrow{sinix}={isinhx} \\ $$$${cosx}=\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}!}−\frac{{x}^{\mathrm{6}} }{\mathrm{6}!}+...\:\forall{x} \\ $$$$\therefore\:{cosix}=\mathrm{1}−\frac{{i}^{\mathrm{2}} {x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{i}^{\mathrm{4}} {x}^{\mathrm{4}} }{\mathrm{4}!}−\frac{{i}^{\mathrm{6}} {x}^{\mathrm{6}} }{\mathrm{6}!}+... \\ $$$${cosix}=\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}!}+\frac{{x}^{\mathrm{6}} }{\mathrm{6}!}+... \\ $$$${But}\:{coshx}=\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}!}+\frac{{x}^{\mathrm{6}} }{\mathrm{6}!}+...\:\forall{x} \\ $$$$\therefore\:{cosix}={coshx} \\ $$$${Thus},\:{tanib}=\frac{{isinhb}}{{coshb}}=\frac{{i}\left({e}^{{b}} −{e}^{−{b}} \right)}{{e}^{{b}} +{e}^{−{b}} }. \\ $$$$ \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 23/Oct/15

Thanks very much!  You are very right! Actually the formula   of  tan z (((e^(iz) −e^(−iz)  )/(e^(iz) +e^(−iz) )))  was misprinted in a book!  The book was not low standard but printing  errors are common here. I used this wrong  formula and reached at wrong result!  Anyway thanks again to correct my mistake.

$${Thanks}\:{very}\:{much}! \\ $$$${You}\:{are}\:{very}\:{right}!\:{Actually}\:{the}\:{formula}\: \\ $$$${of}\:\:{tan}\:{z}\:\left(\frac{{e}^{{iz}} −{e}^{−{iz}} \:}{{e}^{{iz}} +{e}^{−{iz}} }\right)\:\:{was}\:{misprinted}\:{in}\:{a}\:{book}! \\ $$$${The}\:{book}\:{was}\:{not}\:{low}\:{standard}\:{but}\:{printing} \\ $$$${errors}\:{are}\:{common}\:{here}.\:{I}\:{used}\:{this}\:{wrong} \\ $$$${formula}\:{and}\:{reached}\:{at}\:{wrong}\:{result}! \\ $$$${Anyway}\:{thanks}\:{again}\:{to}\:{correct}\:{my}\:{mistake}.\: \\ $$

Commented by Yozzy last updated on 23/Oct/15

No problem. I′m here to learn and help too.

$${No}\:{problem}.\:{I}'{m}\:{here}\:{to}\:{learn}\:{and}\:{help}\:{too}. \\ $$

Commented by Rasheed Soomro last updated on 23/Oct/15

ThankS.

$${Thank}\boldsymbol{{S}}. \\ $$

Answered by Rasheed Soomro last updated on 25/Oct/15

tan^(−1) (c+id)=a+ib   Any of  a  and  b  depends on both c and d:         a =(1/2)tan^(−1) (((2c)/(1−c^2 −d^2 )))                b=(1/(2i))tan^(−1) (((2id)/(1+c^2 +d^2 )))  −−−−−−−−−−−−−−−−−  Proof:  tan^(−1) (c+id)=a+ib ..............................(1)  tan^(−1) (c−id)=a−ib    [∵ tan z^(−) =tan z^(−)   ]......(2)  Adding (1) and  (2)         2a=tan^(−1) (c+id)+tan^(−1) (c−id)              =tan^(−1) (((c+id)+(c−id))/(1−(c+id)(c−id)))              =tan^(−1) ((2c)/(1−(c^2 +d^2 )))  Or a =(1/2)tan^(−1) (((2c)/(1−c^2 −d^2 ))).................I(Proved)  −−−−−−−−−−−−−−−−  Similarly subtracting (2) from (1), we get    2ib=tan^(−1) (c+id)−tan^(−1) (c−id)           =tan^(−1) (((c+id)−(c−id))/(1+(c+id)(c−id)))            =tan^(−1) ((2id)/(1+c^2 +d^2 ))      tan 2ib=((2id)/(1+c^2 +d^2 ))       2ib=tan^(−1) (((2id)/(1+c^2 +d^2 )))          b=(1/(2i))tan^(−1) (((2id)/(1+c^2 +d^2 )))...................II( Proved)  −−−−−−−−−−−−−−−−−−−

$${tan}^{−\mathrm{1}} \left({c}+{id}\right)={a}+{ib}\: \\ $$$${Any}\:{of}\:\:{a}\:\:{and}\:\:{b}\:\:{depends}\:{on}\:{both}\:{c}\:{and}\:{d}: \\ $$$$\:\:\:\:\:\:\:{a}\:=\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{c}}{\mathrm{1}−\mathrm{c}^{\mathrm{2}} −\mathrm{d}^{\mathrm{2}} }\right) \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:{b}=\frac{\mathrm{1}}{\mathrm{2}{i}}{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{id}}{\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} }\right) \\ $$$$−−−−−−−−−−−−−−−−− \\ $$$$\boldsymbol{\mathrm{Proof}}: \\ $$$${tan}^{−\mathrm{1}} \left({c}+{id}\right)={a}+{ib}\:..............................\left(\mathrm{1}\right) \\ $$$${tan}^{−\mathrm{1}} \left({c}−{id}\right)={a}−{ib}\:\:\:\:\left[\because\:\overline {{tan}\:{z}}={tan}\:\overline {{z}}\:\:\right]......\left(\mathrm{2}\right) \\ $$$${Adding}\:\left(\mathrm{1}\right)\:{and}\:\:\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\mathrm{2}{a}={tan}^{−\mathrm{1}} \left({c}+{id}\right)+{tan}^{−\mathrm{1}} \left({c}−{id}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:={tan}^{−\mathrm{1}} \frac{\left({c}+{id}\right)+\left({c}−{id}\right)}{\mathrm{1}−\left({c}+{id}\right)\left({c}−{id}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:={tan}^{−\mathrm{1}} \frac{\mathrm{2}{c}}{\mathrm{1}−\left({c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)} \\ $$$${Or}\:{a}\:=\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{c}}{\mathrm{1}−\mathrm{c}^{\mathrm{2}} −\mathrm{d}^{\mathrm{2}} }\right).................{I}\left({Proved}\right) \\ $$$$−−−−−−−−−−−−−−−− \\ $$$${Similarly}\:{subtracting}\:\left(\mathrm{2}\right)\:{from}\:\left(\mathrm{1}\right),\:{we}\:{get} \\ $$$$\:\:\mathrm{2}{ib}={tan}^{−\mathrm{1}} \left({c}+{id}\right)−{tan}^{−\mathrm{1}} \left({c}−{id}\right) \\ $$$$\:\:\:\:\:\:\:\:\:={tan}^{−\mathrm{1}} \frac{\left({c}+{id}\right)−\left({c}−{id}\right)}{\mathrm{1}+\left({c}+{id}\right)\left({c}−{id}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:={tan}^{−\mathrm{1}} \frac{\mathrm{2}{id}}{\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} } \\ $$$$\:\:\:\:{tan}\:\mathrm{2}{ib}=\frac{\mathrm{2}{id}}{\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\mathrm{2}{ib}={tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{id}}{\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} }\right) \\ $$$$\:\:\:\:\:\:\:\:{b}=\frac{\mathrm{1}}{\mathrm{2}{i}}{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{id}}{\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} }\right)...................{II}\left(\:{Proved}\right) \\ $$$$−−−−−−−−−−−−−−−−−−− \\ $$$$ \\ $$

Commented by Yozzy last updated on 23/Oct/15

I would have appreciated a proof of your answer.

$${I}\:{would}\:{have}\:{appreciated}\:{a}\:{proof}\:{of}\:{your}\:{answer}. \\ $$

Commented by Yozzy last updated on 23/Oct/15

Some calculations I′ve done has interestingly showed that for c=1 and d=1  my result yields both your value for a and Wolfram Alpha′s answer for a.  Two different answers for a were obtained! How does one decide which  value to take?

$${Some}\:{calculations}\:{I}'{ve}\:{done}\:{has}\:{interestingly}\:{showed}\:{that}\:{for}\:{c}=\mathrm{1}\:{and}\:{d}=\mathrm{1} \\ $$$${my}\:{result}\:{yields}\:{both}\:{your}\:{value}\:{for}\:{a}\:{and}\:{Wolfram}\:{Alpha}'{s}\:{answer}\:{for}\:{a}. \\ $$$${Two}\:{different}\:{answers}\:{for}\:{a}\:{were}\:{obtained}!\:{How}\:{does}\:{one}\:{decide}\:{which} \\ $$$${value}\:{to}\:{take}? \\ $$

Answered by Yozzy last updated on 23/Oct/15

tan^(−1) (c+id)=a+ib  a,b,c,d∈R.  ∴ c+id=tan(a+ib)=((tana+tanib)/(1−tanatanib))  Now, tanib=itanhb.  ∴ c+id=((tana+itanhb)/(1−itanatanhb))⇒(c+id)(1−itanatanhb)=tana+itanhb  c+dtanatanhb+i(d−ctanatanhb)=tana+itanhb  Equating real and imaginary parts we get     c+dtanatanhb=tana⇒tana(1−dtanhb)=c⇒tana=(c/(1−dtanhb)).......(i)  And    tanhb=d−ctanatanhb⇒tana=((d−tanhb)/(ctanhb))..........(ii)  Since (i)=(ii)⇒ (c/(1−dtanhb))=((d−tanhb)/(ctanhb)). Let ω=tanhb.  ∴ (c/(1−dω))=((d−ω)/(cω))⇒c^2 ω=(1−dω)(d−ω)=d−ω−d^2 ω+dω^2   dω^2 −(d^2 +1+c^2 )ω+d=0  This is a quadratic so      ω=(((1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d)))/(2d))      ∴  tanhb=(((1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d)))/(2d))   (d≠0) and certainly (1+c^2 +d^2 )^2 >4d  ∀c,d∈R     Let y=tanh^(−1) x.⇒tanhy=x⇒sinhy=xcoshy  e^y −e^(−y) =xe^y +xe^(−y)   ×e^y : e^(2y) −1=xe^(2y) +x  e^(2y) (1−x)=x+1⇒e^(2y) =((x+1)/(1−x))⇒2y=ln(((1+x)/(1−x)))⇒y=(1/2)ln(((1+x)/(1−x))) ∣x∣<1 (so y is real and defined)  So b=tanh^(−1) [(((1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d)))/(2d))] with b∈R only if ∣(((1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d)))/(2d))∣<1  ⇒∣(1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d))∣<2∣d∣. If we assume this condition is satisfied  we can find a.    dtanhb=(((1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d)))/2)  1−dtanhb=((2−(1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d)))/2)  ∴ tana=((2c)/(2−{(1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d))}))  tana∈(−∞,+∞) so c and d can be such that the above equation is valid  for any real c and d satisfying the condition ∣(1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d))∣<2∣d∣  ∴ a=tan^(−1) (((2c)/(2−{(1+c^2 +d^2 )±(√((1+c^2 +d^2 )^2 −4d))})))

$${tan}^{−\mathrm{1}} \left({c}+{id}\right)={a}+{ib}\:\:{a},{b},{c},{d}\in\mathbb{R}. \\ $$$$\therefore\:{c}+{id}={tan}\left({a}+{ib}\right)=\frac{{tana}+{tanib}}{\mathrm{1}−{tanatanib}} \\ $$$${Now},\:{tanib}={itanhb}. \\ $$$$\therefore\:{c}+{id}=\frac{{tana}+{itanhb}}{\mathrm{1}−{itanatanhb}}\Rightarrow\left({c}+{id}\right)\left(\mathrm{1}−{itanatanhb}\right)={tana}+{itanhb} \\ $$$${c}+{dtanatanhb}+{i}\left({d}−{ctanatanhb}\right)={tana}+{itanhb} \\ $$$${Equating}\:{real}\:{and}\:{imaginary}\:{parts}\:{we}\:{get}\: \\ $$$$\:\:{c}+{dtanatanhb}={tana}\Rightarrow{tana}\left(\mathrm{1}−{dtanhb}\right)={c}\Rightarrow{tana}=\frac{{c}}{\mathrm{1}−{dtanhb}}.......\left({i}\right) \\ $$$${And} \\ $$$$\:\:{tanhb}={d}−{ctanatanhb}\Rightarrow{tana}=\frac{{d}−{tanhb}}{{ctanhb}}..........\left({ii}\right) \\ $$$${Since}\:\left({i}\right)=\left({ii}\right)\Rightarrow\:\frac{{c}}{\mathrm{1}−{dtanhb}}=\frac{{d}−{tanhb}}{{ctanhb}}.\:{Let}\:\omega={tanhb}. \\ $$$$\therefore\:\frac{{c}}{\mathrm{1}−{d}\omega}=\frac{{d}−\omega}{{c}\omega}\Rightarrow{c}^{\mathrm{2}} \omega=\left(\mathrm{1}−{d}\omega\right)\left({d}−\omega\right)={d}−\omega−{d}^{\mathrm{2}} \omega+{d}\omega^{\mathrm{2}} \\ $$$${d}\omega^{\mathrm{2}} −\left({d}^{\mathrm{2}} +\mathrm{1}+{c}^{\mathrm{2}} \right)\omega+{d}=\mathrm{0} \\ $$$${This}\:{is}\:{a}\:{quadratic}\:{so} \\ $$$$\:\:\:\:\omega=\frac{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)\pm\sqrt{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{d}}}{\mathrm{2}{d}}\:\:\:\: \\ $$$$\therefore\:\:{tanhb}=\frac{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)\pm\sqrt{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{d}}}{\mathrm{2}{d}}\:\:\:\left({d}\neq\mathrm{0}\right)\:{and}\:{certainly}\:\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)^{\mathrm{2}} >\mathrm{4}{d}\:\:\forall{c},{d}\in\mathbb{R}\: \\ $$$$ \\ $$$${Let}\:{y}={tanh}^{−\mathrm{1}} {x}.\Rightarrow{tanhy}={x}\Rightarrow{sinhy}={xcoshy} \\ $$$${e}^{{y}} −{e}^{−{y}} ={xe}^{{y}} +{xe}^{−{y}} \\ $$$$×{e}^{{y}} :\:{e}^{\mathrm{2}{y}} −\mathrm{1}={xe}^{\mathrm{2}{y}} +{x} \\ $$$${e}^{\mathrm{2}{y}} \left(\mathrm{1}−{x}\right)={x}+\mathrm{1}\Rightarrow{e}^{\mathrm{2}{y}} =\frac{{x}+\mathrm{1}}{\mathrm{1}−{x}}\Rightarrow\mathrm{2}{y}={ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)\Rightarrow{y}=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)\:\mid{x}\mid<\mathrm{1}\:\left({so}\:{y}\:{is}\:{real}\:{and}\:{defined}\right) \\ $$$${So}\:{b}={tanh}^{−\mathrm{1}} \left[\frac{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)\pm\sqrt{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{d}}}{\mathrm{2}{d}}\right]\:{with}\:{b}\in\mathbb{R}\:{only}\:{if}\:\mid\frac{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)\pm\sqrt{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{d}}}{\mathrm{2}{d}}\mid<\mathrm{1} \\ $$$$\Rightarrow\mid\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)\pm\sqrt{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{d}}\mid<\mathrm{2}\mid{d}\mid.\:{If}\:{we}\:{assume}\:{this}\:{condition}\:{is}\:{satisfied} \\ $$$${we}\:{can}\:{find}\:{a}. \\ $$$$ \\ $$$${dtanhb}=\frac{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)\pm\sqrt{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{d}}}{\mathrm{2}} \\ $$$$\mathrm{1}−{dtanhb}=\frac{\mathrm{2}−\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)\pm\sqrt{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{d}}}{\mathrm{2}} \\ $$$$\therefore\:{tana}=\frac{\mathrm{2}{c}}{\mathrm{2}−\left\{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)\pm\sqrt{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{d}}\right\}} \\ $$$${tana}\in\left(−\infty,+\infty\right)\:{so}\:{c}\:{and}\:{d}\:{can}\:{be}\:{such}\:{that}\:{the}\:{above}\:{equation}\:{is}\:{valid} \\ $$$${for}\:{any}\:{real}\:{c}\:{and}\:{d}\:{satisfying}\:{the}\:{condition}\:\mid\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)\pm\sqrt{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{d}}\mid<\mathrm{2}\mid{d}\mid \\ $$$$\therefore\:{a}={tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{c}}{\mathrm{2}−\left\{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)\pm\sqrt{\left(\mathrm{1}+{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{d}}\right\}}\right) \\ $$$$ \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 23/Oct/15

Very intresting! Your work needs  a deep study....

$$\boldsymbol{\mathrm{Very}}\:\boldsymbol{\mathrm{intresting}}!\:\boldsymbol{\mathrm{Your}}\:\boldsymbol{\mathrm{work}}\:\boldsymbol{\mathrm{needs}}\:\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{deep}}\:\boldsymbol{\mathrm{study}}....\: \\ $$

Commented by Rasheed Soomro last updated on 23/Oct/15

That means you are only undergraduate! I appreciate   your deep approach at this early stage and offer good  wishes for your future!

$${That}\:{means}\:{you}\:{are}\:{only}\:{undergraduate}!\:{I}\:{appreciate}\: \\ $$$${your}\:{deep}\:{approach}\:{at}\:{this}\:{early}\:{stage}\:{and}\:{offer}\:{good} \\ $$$${wishes}\:{for}\:{your}\:{future}! \\ $$

Commented by Yozzy last updated on 23/Oct/15

Yes! I know this isn′t perfect since this doesn′t give a complete picture I think  of the inverse tangent of complex numbers.   I also haven′t started university as yet so I don′t know much of complex  analysis. I begin next year.

$${Yes}!\:{I}\:{know}\:{this}\:{isn}'{t}\:{perfect}\:{since}\:{this}\:{doesn}'{t}\:{give}\:{a}\:{complete}\:{picture}\:{I}\:{think} \\ $$$${of}\:{the}\:{inverse}\:{tangent}\:{of}\:{complex}\:{numbers}.\: \\ $$$${I}\:{also}\:{haven}'{t}\:{started}\:{university}\:{as}\:{yet}\:{so}\:{I}\:{don}'{t}\:{know}\:{much}\:{of}\:{complex} \\ $$$${analysis}.\:{I}\:{begin}\:{next}\:{year}. \\ $$$$ \\ $$

Commented by 123456 last updated on 23/Oct/15

good lucky :)

$$\left.\mathrm{good}\:\mathrm{lucky}\::\right) \\ $$

Commented by Yozzy last updated on 24/Oct/15

Thank you! :D

$${Thank}\:{you}!\::\mathrm{D}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com