Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 189630 by mathocean1 last updated on 19/Mar/23

16^x +20^x =25^x   x (∈ R) =?

16x+20x=25xx(R)=?

Answered by Rasheed.Sindhi last updated on 19/Mar/23

16^x +20^x =25^x   ;   x (∈ R) =?  (((16)/(20)))^x +1=(((25)/(20)))^x   ((4/5))^x +1=((5/4))^x   ((4/5))^x −((4/5))^(−x) +1=0     y−y^(−1) +1=0    y^2 +y−1=0     y=((−1±(√(1+4)))/2) =((−1±(√5) )/2)     ((4/5))^x =((−1±(√5) )/2)  xlog_2 ((4/5))=log_2 (((−1±(√5) )/2))=log_2 (−1±(√5) )−log_2 2    x=((log_2 (−1±(√5) )−1)/(log_2 4−log_2 5  ))  x=((log_2 (−1±(√5) )−1)/(2−log_2 5  ))  ∵ log_2 (−1−(√5) )∉R  ∴ x=((log_2 (−1+(√5) )−1)/(2−log_2 5  ))

16x+20x=25x;x(R)=?(1620)x+1=(2520)x(45)x+1=(54)x(45)x(45)x+1=0yy1+1=0y2+y1=0y=1±1+42=1±52(45)x=1±52xlog2(45)=log2(1±52)=log2(1±5)log22x=log2(1±5)1log24log25x=log2(1±5)12log25log2(15)Rx=log2(1+5)12log25

Commented by Rasheed.Sindhi last updated on 19/Mar/23

Right sir! Corrected now.

Rightsir!Correctednow.

Commented by JDamian last updated on 19/Mar/23

but log_2 (−1−(√5)) ∉ R

butlog2(15)R

Commented by mathocean1 last updated on 19/Mar/23

thanks

thanks

Answered by Rasheed.Sindhi last updated on 20/Mar/23

AnOther Way  16^x +20^x =25^x   (((16)/(25)))^x +(((20)/(25)))^x =1  ((4^2 /5^2 ))^x +((4/5))^x =1  {((4/5))^x }^2 +((4/5))^x =1       y^2 +y−1=0     y=((−1±(√(1+4)))/2)=((−1±(√5))/2)    ((4/5))^x =((−1±(√5))/2)  xlog_2 ((4/5))=log_2 (((−1±(√5))/2))    x=((log_2 (−1±(√5))−log_2 2  )/(log_2 4−log_2 5  ))  ∵ log_2 (−1−(√5))∉R   ∴ x=((log_2 (−1+(√5))−1  )/(2−log_2 5  ))

AnOtherWay16x+20x=25x(1625)x+(2025)x=1(4252)x+(45)x=1{(45)x}2+(45)x=1y2+y1=0y=1±1+42=1±52(45)x=1±52xlog2(45)=log2(1±52)x=log2(1±5)log22log24log25log2(15)Rx=log2(1+5)12log25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com