Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 18967 by Tinkutara last updated on 02/Aug/17

Let PQRS be a rectangle such that  PQ = a and QR = b. Suppose r_1  is the  radius of the circle passing through P  and Q and touching RS and r_2  is the  radius of the circle passing through Q  and R and touching PS. Show that :  5(a + b) ≤ 8(r_1  + r_2 )

$$\mathrm{Let}\:\mathrm{PQRS}\:\mathrm{be}\:\mathrm{a}\:\mathrm{rectangle}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{PQ}\:=\:{a}\:\mathrm{and}\:\mathrm{QR}\:=\:{b}.\:\mathrm{Suppose}\:\mathrm{r}_{\mathrm{1}} \:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{passing}\:\mathrm{through}\:\mathrm{P} \\ $$$$\mathrm{and}\:\mathrm{Q}\:\mathrm{and}\:\mathrm{touching}\:\mathrm{RS}\:\mathrm{and}\:\mathrm{r}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{passing}\:\mathrm{through}\:\mathrm{Q} \\ $$$$\mathrm{and}\:\mathrm{R}\:\mathrm{and}\:\mathrm{touching}\:\mathrm{PS}.\:\mathrm{Show}\:\mathrm{that}\:: \\ $$$$\mathrm{5}\left({a}\:+\:{b}\right)\:\leqslant\:\mathrm{8}\left(\mathrm{r}_{\mathrm{1}} \:+\:\mathrm{r}_{\mathrm{2}} \right) \\ $$

Commented by Tinkutara last updated on 02/Aug/17

Thank you very much ajfour Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{ajfour}\:\mathrm{Sir}! \\ $$

Commented by ajfour last updated on 02/Aug/17

Commented by ajfour last updated on 02/Aug/17

C_1 ≡[b−r_1 , (a/2)]       C_2 ≡[(b/2), a−r_2 ]  QC_1 ^2 =r_1 ^2 =(b−r_1 )^2 +(a^2 /4)    ....(i)  and    QC_2 ^2 =r_2 ^2 =(b^2 /4)+(a−r_2 )^2   ...(ii)  from (i):   b(2r_1 −b)=(a^2 /4)     ⇒  2r_1 =b+(a^2 /(4b))   or  8r_1 =4b+(a^2 /b)  and  from (ii):   a(2r_2 −a)=(b^2 /4)  or  8r_2 =4a+(b^2 /a)  adding these to get:   8(r_1 +r_2 )=4(a+b)+((a^2 /b)+(b^2 /a))  It remains to prove that                    (a^2 /b)+(b^2 /a) ≥ a+b  or              ((a^3 +b^3 )/(ab)) ≥ a+b  or       a^3 −a^2 b+b^3 −ab^2  ≥0  or       a^2 (a−b)−b^2 (a−b) ≥0             (a^2 −b^2 )(a−b) ≥ 0              (a+b)(a−b)^2  ≥ 0         which is true since a>0 , b>0 .

$$\mathrm{C}_{\mathrm{1}} \equiv\left[\mathrm{b}−\mathrm{r}_{\mathrm{1}} ,\:\frac{\mathrm{a}}{\mathrm{2}}\right]\:\:\:\:\:\:\:\mathrm{C}_{\mathrm{2}} \equiv\left[\frac{\mathrm{b}}{\mathrm{2}},\:\mathrm{a}−\mathrm{r}_{\mathrm{2}} \right] \\ $$$$\mathrm{QC}_{\mathrm{1}} ^{\mathrm{2}} =\mathrm{r}_{\mathrm{1}} ^{\mathrm{2}} =\left(\mathrm{b}−\mathrm{r}_{\mathrm{1}} \right)^{\mathrm{2}} +\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{4}}\:\:\:\:....\left(\mathrm{i}\right) \\ $$$$\mathrm{and}\:\:\:\:\mathrm{QC}_{\mathrm{2}} ^{\mathrm{2}} =\mathrm{r}_{\mathrm{2}} ^{\mathrm{2}} =\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{4}}+\left(\mathrm{a}−\mathrm{r}_{\mathrm{2}} \right)^{\mathrm{2}} \:\:...\left(\mathrm{ii}\right) \\ $$$$\mathrm{from}\:\left(\mathrm{i}\right): \\ $$$$\:\mathrm{b}\left(\mathrm{2r}_{\mathrm{1}} −\mathrm{b}\right)=\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{4}}\:\:\: \\ $$$$\Rightarrow\:\:\mathrm{2r}_{\mathrm{1}} =\mathrm{b}+\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{4b}}\:\:\:\mathrm{or}\:\:\mathrm{8r}_{\mathrm{1}} =\mathrm{4b}+\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}} \\ $$$$\mathrm{and}\:\:\mathrm{from}\:\left(\mathrm{ii}\right): \\ $$$$\:\mathrm{a}\left(\mathrm{2r}_{\mathrm{2}} −\mathrm{a}\right)=\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{4}}\:\:\mathrm{or}\:\:\mathrm{8r}_{\mathrm{2}} =\mathrm{4a}+\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{a}} \\ $$$$\mathrm{adding}\:\mathrm{these}\:\mathrm{to}\:\mathrm{get}: \\ $$$$\:\mathrm{8}\left(\mathrm{r}_{\mathrm{1}} +\mathrm{r}_{\mathrm{2}} \right)=\mathrm{4}\left(\mathrm{a}+\mathrm{b}\right)+\left(\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}}+\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{a}}\right) \\ $$$$\mathrm{It}\:\mathrm{remains}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}}+\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{a}}\:\geqslant\:\mathrm{a}+\mathrm{b} \\ $$$$\mathrm{or}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} }{\mathrm{ab}}\:\geqslant\:\mathrm{a}+\mathrm{b} \\ $$$$\mathrm{or}\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{3}} −\mathrm{a}^{\mathrm{2}} \mathrm{b}+\mathrm{b}^{\mathrm{3}} −\mathrm{ab}^{\mathrm{2}} \:\geqslant\mathrm{0} \\ $$$$\mathrm{or}\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{2}} \left(\mathrm{a}−\mathrm{b}\right)−\mathrm{b}^{\mathrm{2}} \left(\mathrm{a}−\mathrm{b}\right)\:\geqslant\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)\left(\mathrm{a}−\mathrm{b}\right)\:\geqslant\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{a}+\mathrm{b}\right)\left(\mathrm{a}−\mathrm{b}\right)^{\mathrm{2}} \:\geqslant\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\mathrm{which}\:\mathrm{is}\:\mathrm{true}\:\mathrm{since}\:\mathrm{a}>\mathrm{0}\:,\:\mathrm{b}>\mathrm{0}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com