All Questions Topic List
Differential Equation Questions
Previous in All Question Next in All Question
Previous in Differential Equation Next in Differential Equation
Question Number 1898 by 123456 last updated on 22/Oct/15
dfdt=αf+βt+γf(t)=??
Answered by Yozzy last updated on 22/Oct/15
dfdt=αf+βt+γwhereIassumethatα,β,γareconstants.Thisequationmayberewrittenasdfdt−αf=βt+γ(∗).Theequationisafirstorderlinearnon−homogeneousdifferentialequationwhichmaybesolvedbyuseofanintegratingfactorψ(t).Letψ(t)=e∫−αdt=e−αt.Multiplyingbothsidesof(∗)byψ(t)wegetψ(t)dfdt+ψ(t)(−α)f=ψ(t)(βt+γ)⇒e−αtdfdt+(−αe−αt)f=e−αt(βt+γ)Noticethatddt(e−αtf)=e−αtdfdt+(−αe−αt)f.∴ddt(fe−αt)=e−αt(βt+γ)(∗∗)Integratingbothsidesof(∗∗)wegetfe−αt=∫e−αt(βt+γ)dtf=eαt∫e−αt(βt+γ)dtByintegratingbyparts,∫e−αt(βt+γ)dt=e−αt−α(βt+γ)−∫e−αt−α×βdt(α≠0)=e−αt(βt+γ)−α+βα×e−αt−α+D∫e−αt(βt+γ)dt=e−αt−α(βt+γ+βα)+D∴f=eαt(e−αt−α(βt+βα+γ)+D)f(t)=Deαt−1α×βαt+β+αγαf(t)=Deαt−βαt+β+αγα2(α≠0)whereDisanarbitraryconstant.CheckingSolution:dfdt=αDeαt−βαDeαt=f+βαt+β+αγα2⇒dfdt=αf+βt+αβα2+α×αγα2−βαdfdt=αf+βt+γasgiven.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com