Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 1898 by 123456 last updated on 22/Oct/15

(df/dt)=αf+βt+γ  f(t)=??

$$\frac{{df}}{{dt}}=\alpha{f}+\beta{t}+\gamma \\ $$$${f}\left({t}\right)=?? \\ $$

Answered by Yozzy last updated on 22/Oct/15

(df/dt)=αf+βt+γ   where I assume that α,β,γ are constants. This equation may be  rewritten as     (df/dt)−αf=βt+γ  (∗). The equation is a first order linear non−homogeneous  differential equation which may be solved by use of an integrating factor ψ(t).  Let ψ(t)=e^(∫−αdt) =e^(−αt) . Multiplying both sides of (∗) by ψ(t) we get                                  ψ(t)(df/dt)+ψ(t)(−α)f=ψ(t)(βt+γ)                      ⇒       e^(−αt) (df/dt)+(−αe^(−αt) )f=e^(−αt) (βt+γ)  Notice that (d/dt)(e^(−αt) f)=e^(−αt) (df/dt)+(−αe^(−αt) )f.                               ∴ (d/dt)(fe^(−αt) )=e^(−αt) (βt+γ)    (∗∗)  Integrating both sides of (∗∗) we get                                           fe^(−αt) =∫e^(−αt) (βt+γ)dt                                             f=e^(αt) ∫e^(−αt) (βt+γ)dt  By integrating by parts,          ∫e^(−αt) (βt+γ)dt=(e^(−αt) /(−α))(βt+γ)−∫(e^(−αt) /(−α))×βdt      (α≠0)                                         =((e^(−αt) (βt+γ))/(−α))+(β/α)×(e^(−αt) /(−α))+D         ∫e^(−αt) (βt+γ)dt=(e^(−αt) /(−α))(βt+γ+(β/α))+D  ∴ f=e^(αt) ((e^(−αt) /(−α))(βt+(β/α)+γ)+D)      f(t)=De^(αt) −(1/α)×((βαt+β+αγ)/α)        f(t)=De^(αt) −((βαt+β+αγ)/α^2 )  (α≠0) where D is an arbitrary constant.  Checking Solution:       (df/dt)=αDe^(αt) −(β/α)  De^(αt) =f+(β/α)t+((β+αγ)/α^2 )  ⇒(df/dt)=αf+βt+α(β/α^2 )+α×((αγ)/α^2 )−(β/α)  (df/dt)=αf+βt+γ    as given.

$$\frac{{df}}{{dt}}=\alpha{f}+\beta{t}+\gamma\:\:\:{where}\:{I}\:{assume}\:{that}\:\alpha,\beta,\gamma\:{are}\:{constants}.\:{This}\:{equation}\:{may}\:{be} \\ $$$${rewritten}\:{as}\:\:\:\:\:\frac{{df}}{{dt}}−\alpha{f}=\beta{t}+\gamma\:\:\left(\ast\right).\:{The}\:{equation}\:{is}\:{a}\:{first}\:{order}\:{linear}\:{non}−{homogeneous} \\ $$$${differential}\:{equation}\:{which}\:{may}\:{be}\:{solved}\:{by}\:{use}\:{of}\:{an}\:{integrating}\:{factor}\:\psi\left({t}\right). \\ $$$${Let}\:\psi\left({t}\right)={e}^{\int−\alpha{dt}} ={e}^{−\alpha{t}} .\:{Multiplying}\:{both}\:{sides}\:{of}\:\left(\ast\right)\:{by}\:\psi\left({t}\right)\:{we}\:{get}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\psi\left({t}\right)\frac{{df}}{{dt}}+\psi\left({t}\right)\left(−\alpha\right){f}=\psi\left({t}\right)\left(\beta{t}+\gamma\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:\:\:\:\:{e}^{−\alpha{t}} \frac{{df}}{{dt}}+\left(−\alpha{e}^{−\alpha{t}} \right){f}={e}^{−\alpha{t}} \left(\beta{t}+\gamma\right) \\ $$$${Notice}\:{that}\:\frac{{d}}{{dt}}\left({e}^{−\alpha{t}} {f}\right)={e}^{−\alpha{t}} \frac{{df}}{{dt}}+\left(−\alpha{e}^{−\alpha{t}} \right){f}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:\frac{{d}}{{dt}}\left({fe}^{−\alpha{t}} \right)={e}^{−\alpha{t}} \left(\beta{t}+\gamma\right)\:\:\:\:\left(\ast\ast\right) \\ $$$${Integrating}\:{both}\:{sides}\:{of}\:\left(\ast\ast\right)\:{we}\:{get}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{fe}^{−\alpha{t}} =\int{e}^{−\alpha{t}} \left(\beta{t}+\gamma\right){dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{f}={e}^{\alpha{t}} \int{e}^{−\alpha{t}} \left(\beta{t}+\gamma\right){dt} \\ $$$${By}\:{integrating}\:{by}\:{parts}, \\ $$$$\:\:\:\:\:\:\:\:\int{e}^{−\alpha{t}} \left(\beta{t}+\gamma\right){dt}=\frac{{e}^{−\alpha{t}} }{−\alpha}\left(\beta{t}+\gamma\right)−\int\frac{{e}^{−\alpha{t}} }{−\alpha}×\beta{dt}\:\:\:\:\:\:\left(\alpha\neq\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{e}^{−\alpha{t}} \left(\beta{t}+\gamma\right)}{−\alpha}+\frac{\beta}{\alpha}×\frac{{e}^{−\alpha{t}} }{−\alpha}+{D} \\ $$$$\:\:\:\:\:\:\:\int{e}^{−\alpha{t}} \left(\beta{t}+\gamma\right){dt}=\frac{{e}^{−\alpha{t}} }{−\alpha}\left(\beta{t}+\gamma+\frac{\beta}{\alpha}\right)+{D} \\ $$$$\therefore\:{f}={e}^{\alpha{t}} \left(\frac{{e}^{−\alpha{t}} }{−\alpha}\left(\beta{t}+\frac{\beta}{\alpha}+\gamma\right)+{D}\right) \\ $$$$\:\:\:\:{f}\left({t}\right)={De}^{\alpha{t}} −\frac{\mathrm{1}}{\alpha}×\frac{\beta\alpha{t}+\beta+\alpha\gamma}{\alpha} \\ $$$$\:\:\:\:\:\:{f}\left({t}\right)={De}^{\alpha{t}} −\frac{\beta\alpha{t}+\beta+\alpha\gamma}{\alpha^{\mathrm{2}} }\:\:\left(\alpha\neq\mathrm{0}\right)\:{where}\:{D}\:{is}\:{an}\:{arbitrary}\:{constant}. \\ $$$${Checking}\:{Solution}: \\ $$$$\:\:\:\:\:\frac{{df}}{{dt}}=\alpha{De}^{\alpha{t}} −\frac{\beta}{\alpha} \\ $$$${De}^{\alpha{t}} ={f}+\frac{\beta}{\alpha}{t}+\frac{\beta+\alpha\gamma}{\alpha^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{df}}{{dt}}=\alpha{f}+\beta{t}+\alpha\frac{\beta}{\alpha^{\mathrm{2}} }+\alpha×\frac{\alpha\gamma}{\alpha^{\mathrm{2}} }−\frac{\beta}{\alpha} \\ $$$$\frac{{df}}{{dt}}=\alpha{f}+\beta{t}+\gamma\:\:\:\:{as}\:{given}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com