Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 189807 by normans last updated on 22/Mar/23

Answered by a.lgnaoui last updated on 22/Mar/23

   Angle entre verticale et p q(α=arcsin (1/2)=(π/6))  Angle entre Eq et qr est (π/4)  (π/6)+X+(π/4)=π⇒  X=((7π)/(12))

Angleentreverticaleetpq(α=arcsin12=π6)AngleentreEqetqrestπ4π6+X+π4=πX=7π12

Commented by a.lgnaoui last updated on 22/Mar/23

Answered by cortano12 last updated on 22/Mar/23

R(2,1,0) ,Q(2,0,1),P(0,1,2)    { ((QR^(→)  = (0,1,−1))),((QP^(→)  =(−2,1,1))) :}   ⇒cos X = ((QR^(→)  .QP^(→) )/(∣QR^(→) ∣ .∣QP^(→) ∣))   ⇒ cos X=((0+1−1)/( (√2).(√6)))= 0  ⇒X = 90°

R(2,1,0),Q(2,0,1),P(0,1,2){QR=(0,1,1)QP=(2,1,1)cosX=QR.QPQR.QPcosX=0+112.6=0X=90°

Answered by mr W last updated on 22/Mar/23

say edge length of cube is 2.  qr=(√2)  qp=(√6)  qr^2 +qp^2 =2+6=8  pr=2(√2)  pr^2 =8  pr^2 =qr^2 +qp^2   ⇒Δpqr is right angled. ⇒x=90°

sayedgelengthofcubeis2.qr=2qp=6qr2+qp2=2+6=8pr=22pr2=8pr2=qr2+qp2Δpqrisrightangled.x=90°

Terms of Service

Privacy Policy

Contact: info@tinkutara.com