Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 189825 by TUN last updated on 22/Mar/23

∫^b _a (√((x−a)(b−x)))=¿

ab(xa)(bx)=¿

Answered by Frix last updated on 14/Apr/23

circle:  (x−((a+b)/2))^2 +y^2 =(((a−b)^2 )/4)=r^2  ⇒ r=((∣a−b∣)/2)  ⇔  y=±(√((x−a)(b−x)))  ⇒  ∫(√((x−a)(b−x))) dx=((r^2 π)/2)=(((a−b)^2 π)/8)

circle:(xa+b2)2+y2=(ab)24=r2r=ab2y=±(xa)(bx)(xa)(bx)dx=r2π2=(ab)2π8

Answered by Mathspace last updated on 24/Mar/23

(√(x−a))=t⇒x−a=t^2  ⇒x=t^2 +a  I=∫_0 ^(√(b−a))   t(√(b−a−t^2 ))(2t)dt  =2∫_0 ^(√(b−a)) t^2 (√(b−a−t^2 ))dt  =_(t=(√(b−a))y)    2∫_0 ^1 (b−a)y^2 (√(b−a))(√(1−y^2 ))(√(b−a))dy  =2(b−a)^2 ∫_0 ^1 y^2 (√(1−y^2 ))dy  ∫_0 ^1 y^2 (√(1−y^2 ))dy=_(y=sint) ∫_0 ^(π/2) sin^2 tcost cost dt  =∫_0 ^(π/2) (sint cost)^2 dt  =(1/4)∫_0 ^(π/2) sin^2 (2t)dt  =(1/4)∫_0 ^(π/2) ((1−cos(4t))/2)dt  =(1/8).(π/2)−(1/(8.4))[sin(4t)]_0 ^(π/2) (→0)  =(π/(16)) ⇒I=2(b−a)^2 .(π/(16))  =(π/8)(b−a)^2   here we have supposed a≤b

xa=txa=t2x=t2+aI=0batbat2(2t)dt=20bat2bat2dt=t=bay201(ba)y2ba1y2bady=2(ba)201y21y2dy01y21y2dy=y=sint0π2sin2tcostcostdt=0π2(sintcost)2dt=140π2sin2(2t)dt=140π21cos(4t)2dt=18.π218.4[sin(4t)]0π2(0)=π16I=2(ba)2.π16=π8(ba)2herewehavesupposedab

Terms of Service

Privacy Policy

Contact: info@tinkutara.com