Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 190032 by Shrinava last updated on 26/Mar/23

x > 0  xy − 18 = 0  (2x + y)_(min)  = ?

x>0 xy18=0 (2x+y)min=?

Answered by cortano12 last updated on 26/Mar/23

 z =2x+((18)/x) = 2x+18x^(−1)    (dz/dx) = 2−((18)/x^2 ) = 0 ⇒ { ((x=3)),((x=−3)) :}   (d^2 z/dx^2 ) = ((36)/x^3 ) >0 for x=3   z_(min)  = 12

z=2x+18x=2x+18x1 dzdx=218x2=0{x=3x=3 d2zdx2=36x3>0forx=3 zmin=12

Answered by SEKRET last updated on 26/Mar/23

 y = ((18)/x)  2x+((18)/x) ≥ 2(√(2x∙((18)/x)  )) = 12

y=18x 2x+18x22x18x=12

Commented byShrinava last updated on 01/Apr/23

thankyou professor

thankyouprofessor

Answered by mehdee42 last updated on 26/Mar/23

y=((18)/x)  A=2x+((18)/x)⇒A^′ =2−((18)/x^2 )=0⇒x=3  ⇒minA=12

y=18x A=2x+18xA=218x2=0x=3 minA=12

Answered by manxsol last updated on 27/Mar/23

2x+((18)/x)=z  2x^2 −zx+18=0  Δ≫0⇒z^2 −4(18)(2)≫0  zε <−∞,−12] U [12,+∞>  min=12

2x+18x=z 2x2zx+18=0 Δ0z24(18)(2)0 zϵ<,12]U[12,+> min=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com